With his project, Organoid- and AI-based Identification of Oncology Drug-Vaccine Interactions (OrAIOn), Florian Wimmers aims to explore new ways to enhance infection prevention in cancer patients. The ERC is supporting this important research with a grant of 1.5 million euros over a period of five years.
Infectious diseases pose a significant threat to global health, with the top three alone accounting for over 12 million deaths in 2021. “Cancer patients are particularly vulnerable, as they often do not receive sufficient protection from vaccines,” explains Wimmers. This vulnerability may be partly due to the immunosuppressive effects of many cancer medications, which can weaken the immune system and potentially diminish the effectiveness of vaccines.
Together with his team, Wimmers aims to systematically investigate how cancer medications impact the effectiveness of vaccines. To achieve this, they are utilizing an innovative tonsil organoid model that replicates the vaccine response in the human body. Tonsil organoids mimic the processes that typically occur in the lymph nodes – the central hubs of the immune system. By examining the effects of a broad range of cancer medications on these organoids, the team will gain deeper insights into how the immune systems of cancer patients respond to vaccines and what specific interactions occur.
“Another key aspect of our project is the development of a Virtual Lymph node using advanced AI algorithms,” Wimmers explains. This virtual model will have the ability to predict vaccine responses that have not yet been tested in the laboratory. “This approach allows us to identify potential interactions between cancer medications and vaccines on an unprecedented scale,” he adds. Such insights could significantly accelerate the development of personalized vaccine recommendations.
Wimmers and his team will publish their findings in a comprehensive database with validated interactions between cancer medications and vaccines. In the long-term the results of this project will not only enable more precise vaccine recommendations for cancer patients but will also contribute to the development of novel and more effective vaccines for everyone.
Janna Eberhardt