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Understanding and longitudinally tracking the social context of people help in understanding their behavior and mental
well-being better. Hence, instead of burdensome questionnaires, some studies used passive smartphone sensors to infer social
context with machine learning models. However, the few studies that have been done up to date have focused on unique,
situated contexts (i.e., when eating or drinking) in one or two countries, hence limiting the understanding of the inference in
terms of generalization to (i) everyday life occasions and (ii) di�erent countries. In this paper, we used a novel, large-scale,
and multimodal smartphone sensing dataset with over 216K self-reports collected from over 580 participants in �ve countries
(Mongolia, Italy, Denmark, UK, Paraguay), �rst to understand whether social context inference (i.e., alone or not) is feasible
with sensor data, and then, to know how behavioral and country-level diversity a�ects the inference. We found that (i) sensor
features from modalities such as activity, location, app usage, Bluetooth, and WiFi could be informative of social context; (ii)
partially personalized multi-country models (trained and tested with data from all countries) and country-speci�c models
(trained and tested within countries) achieved similar accuracies in the range of 80%-90%; and (iii) models do not generalize
well to unseen countries regardless of geographic similarity.

Additional Key Words and Phrases: ubiquitous computing, mobile sensing, social context, alone or not, smartphone sensors,
machine learning, context-awareness, context inference

1 INTRODUCTION
Human beings have a fundamental need for social interactions, community, and interpersonal relationships
[8]. A well-embedded social life has been found to be especially important for the mental well-being of young
adults [11, 27, 64]. Studies show that being with others (i.e., not alone – being with friends, family, or colleagues)
frequently in adolescence has long-term e�ects on mental and physical well-being. Being in social isolation, on
the other hand (i.e., living alone, being alone for long time periods [30]) increases the probability of depression
and other mental and physical illnesses [8, 11, 30, 39, 60]. Hence, understanding the social context of people
longitudinally has bene�ts in mobile health applications to provide interventions in receptive moments [42, 43].
Moreover, according to Dey [23], “a system is context-aware if it uses context to provide relevant information and/or
services to the user, where relevancy depends on the user’s task”. The social context is an attribute that could allow
mobile health applications, and other mobile apps to be context-aware [18, 24, 35, 51].
Even though there is no single de�nition for the concept of social context, whether a person is alone or

not at a given moment has been used in prior studies as a fundamental construct for social context [42, 43].
Traditionally, the social context, similar to other behavioral and contextual factors such as mood, semantic
location, and food consumption, has been tracked longitudinally through the use of surveys and ecological
momentary assessments [42]. However, the reliance on surveys can impose a burden on users and result in
sparse data. An alternative approach to understanding the behavior, context, and overall well-being of individuals
involves utilizing mobile and wearable sensors, along with self-reports [41]. These e�orts are part of the larger
�eld of ubiquitous computing, which explores the potential of passively sensing the holistic context of individuals
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Table 1. Terminology & definitions used in this paper

Term Description
Social Context If a person is Alone or Not (i.e., with friends, family, or others). We borrow this

de�nition from prior studies in ubiquitous computing domain [42, 43].
Country-speci�c approach Machine learning models are trained and tested only on data from one speci�c

country.
Country-agnostic approach Machine learning models are trained on one country or a set of countries

and tested on another country or another set of countries. Such models are
usually trained with the assumption that the model could be deployed to other
countries, hence the term agnostic.

Multi-country approach Machine learning models are trained on a set of countries and tested again on
the same set of countries. This is the generic way of training models when data
from multiple countries are available.

Population-Level Model (PLM) Training and Testing splits have a disjoint set of users. Represents a case where
a machine learning model trained with a population is deployed to a mobile
app that a new user uses. Hence, end-user data are not used in model training
leading to non-personalized and generic one-size-�ts-all models.

Hybrid Model (HM) Training and testing splits do not have a disjoint set of users. Represent a case
when a mobile app user uses a machine learning model for some time, and
data from the user is used in re-training (or �ne-tuning in the case of neural
networks) models. Hence, this approach leads to partially personalized models.

[2, 22, 68]. In contrast to questionnaires and surveys, mobile sensing-based inferences are less prone to bias and
less burdensome for users [9]. However, accurately inferring whether a person is alone or in the company of
others using mobile sensing data remains a challenging task [3, 14, 41, 43, 67, 68]. Previous studies are often
limited in scope, only exploring the inference of social context in speci�c contexts such as eating events [43],
alcohol consumption events [41], or among a population diagnosed with depression [14]. Hence �rst, there
remains a lack of knowledge regarding the interaction between social context and other behavioral/contextual
features, such as self-reported mood, semantic location, time of day, and concurrent activities, as well as passive
sensor data (including activity, step counts, app usage, Bluetooth, and WiFi), across a wide range of daily life
moments beyond eating or drinking. Furthermore, the e�ectiveness of smartphone sensing-based social context
inference models for complex daily life moments across countries, remains unknown.

The concept of data diversi�cation involves expanding the sample of data used for training machine learning
models in order to enhance representation and improve the model’s ability to generalize to a range of populations
[29]. The consideration of data diversity has been applied to a variety of domains, including computer vision
[13, 56] and natural language processing [12, 62], with the country of origin of the data serving as a key factor.
These e�orts not only improve the performance of the models but also guarantee fairness in the results produced
by the machine learning models, bene�ting diverse users across countries [25, 70]. Despite the importance of
data diversi�cation, the application of this concept to mobile sensing has been hindered by the lack of large-scale
datasets collected from various countries using a consistent protocol [4, 40]. The cost and time-intensive nature of
collecting in-the-wild data across multiple countries present a signi�cant challenge. As a result, even smartphone
sensing studies focusing on speci�c contexts such as eating and drinking events have only used data from one or
two countries [42, 43]. To date, only a few studies have explored the impact of geographical diversity on mobile
sensing-based inference models [31, 40], while none have focused on social context inference [47]. Hence, this
study represents one of the �rst endeavors to examine social context inference across daily life moments, using
multimodal sensing data collected from multiple countries. Therefore, we ask the following research questions:
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• RQ1: Which situational and behavioral aspects are associated with di�erent social contexts in a large dataset
consisting of over 216K self-reports and passive smartphone sensing data?
• RQ2: Can the social context of daily life moments be inferred using smartphone sensing with population-level
models (non-personalized), with a generic one-size-�ts-all multi-country approach? Does the separation of
sensing data by its origin countries aid the inference performance?
• RQ3: What is the e�ect of training hybrid models (partially personalized) on model performance?
• RQ4: Do social context inference models generalize well to unseen countries?

In answering the above research questions, this study provides the following contributions:
• Contribution 1: We examined a large smartphone sensing dataset collected in-the-wild from 581 college
students in �ve countries: UK, Denmark, Italy, Paraguay, and Mongolia. This dataset contains passive sensing
data from continuous sensing modalities such as activity type, step count, bluetooth, wi�, location, cellular, and
proximity; and interaction sensing modalities such as app usage, touch events, screen on/o� episodes, noti�cation,
etc. In addition, the dataset contains over 216K social context self-reports captured from users over four weeks.
In a statistical analysis, we found that individual features from modalities such as app usage (type and amount
of app categories being used – tools, communication, productivity, social), activity types (in a vehicle, on foot,
walking), location (altitude), Bluetooth, WiFi, proximity, and screen episodes were among the top �ve features in
terms of statistical signi�cance in discriminating alone or not events. Further, we also found that the statistically
signi�cant features in discriminating social contexts, are not common across countries. This shows the diversity
of behaviors of individuals across countries and the related contextual features around di�erent social contexts.
• Contribution 2:We operationalized three approaches to examine the inference of social context (Table 1). They
are country-speci�c, country-agnostic, and multi-country. Without considering the country-level diversity of
data sources, we found that the generic multi-country approach provides a moderate accuracy of 62.21% without
feature selection and 62.35% with feature selection, using population-level models. With the country-speci�c
approach, we found that models perform similarly to the multi-country approach, where in most countries, the
margins were less than 2% for both with and without feature selection. However, except for Italy, which yielded
an accuracy of 62.03% compared to the multi-country accuracy of 62.35%, all other countries achieved slightly
higher accuracies above multi-country performance. This �nding contradicts prior studies that used similar
multi-country datasets for health-related inferences, which suggested that country-speci�c models are generally
superior by large margins. Hence, we found that it might not always be the case for social context inference.
• Contribution 3: With hybrid models, the multi-country approach provided an accuracy of 83.45%, whereas,
except the UK, which provided an accuracy of 82.08%, all other countries performed better. However, these
di�erences are marginal in Italy (84.20%) and Paraguay (83.76%), whereas for Denmark (88.72%) and Mongolia
(87.47%), the di�erences were around 5%. However, across ten iterations of testing each setup, the performance
di�erence between multi-country models and country-speci�c models was not statistically signi�cant (p-value ⇡
0.18). Hence, these results suggest that regardless of the level of personalization, having a generic multi-country
model could be su�cient for social context inference, while country-speci�c models would provide minor gains
in certain cases. This �nding, too, is contrary to prior studies that used smartphone sensor data for health-related
inferences that suggested using country-speci�c models for better performance, even after personalization.
• Contribution 4: In the speci�c case of mood inference, even though prior work found that models might
generalize well to geographically closer countries in Europe, we did not �nd such associations when examining
social context inference performance. In fact, in all cases, models did not generalize well to unseen countries.
Hence, similar to previous studies, we also found that models lack generalization when deployed to unseen
countries, compared to country-speci�c or multi-country performance.

This paper is organized as follows: In section 2, the related literature is presented and summarized. In section
3, the dataset, its collection methodology, the chosen feature aggregation, and data pre-processing steps are
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discussed. In section 4, the experimental setup to answer RQ1-RQ4 is discussed. In section 5, the results are
presented. In section 6, the results are interpreted and discussed. A conclusion follows in section 7.

2 BACKGROUND AND RELATED WORK
Next, we surveyed various lines of research that our work draws upon, and grouped them into three main areas:
(i) context recognition and health sensing; (ii) social context inference; and (iii) leveraging diversity-awareness.

2.1 Context Recognition and Health Sensing
In the mobile sensing literature, Alone-or-Not inference, or in general, the social context inference, amounts
to a context recognition task. According to ideas regarding pillars of data that categorize mobile sensing-based
inferences into three categories: behavior, person, and context, the social context inference falls into the third
pillar [41]. Context awareness promises great potential for the optimization and personalization of devices. For
instance, the battery life can be optimized by considering the context of a device and its associated battery
usage pro�le [68]. Thus, in low battery usage contexts (e.g., sleeping, sociable events, etc.), sampling rates of
certain sensors (GPS, cellular sensors) can be decreased [68]. Context-aware applications may also customize the
behavior of the device in a given situation. For instance, the device might disable incoming calls or put the phone
in silent mode if the user is in a meeting (not alone) [38]. Another category of context-aware applications uses
mobile sensing to determine the health and well-being of users. There is a large body of literature around mobile
sensing studies that attempt to detect a diverse set of health-related contexts such as stress [15], mood [36, 55],
depression [14], eating and drinking behavior [10, 53], and related social context [42, 43].

The main aim of such studies lies in the detection, analysis, and intervention of health and well-being-related
contexts. Accurate detection of such a context is the prerequisite for the analysis or intervention [9]. Given the
complexity of many health-related activity recognition tasks, the construction of an appropriate detection pipeline
and the correct modeling of the mobile sensing data is non-trivial. After the correct detection of a health context,
one might explore factors and characteristics which might be associated with negative health outcomes (e.g.,
social context). For instance, heavy drinking episodes of young college students might be associated with peer
pressure from colleagues [42], or one is experiencing a depressive mood after being alone for a long time period
[39]. At last, assuming episodes of adverse well-being-related contexts can be correctly identi�ed, applications
can be developed with the aim of directly improving the well-being of users or intervening in a needed situation.
Such applications have already been developed for depression intervention [14, 63] or mood tracing [55]. Social
context recognition can be classi�ed as one instance of health sensing given its direct relation to mental and
physical well-being [30, 39].

2.2 Social Context Recognition
The social context of people involves complicated phenomena operating on several di�erent dimensions [2]. Two
dimensions that are of particular importance are (i) the number of people the user interacts with; and (ii) the
relationship which is associated with the current social context of the user (e.g., family, colleagues, partner, etc.)
[2]. Considering the number of people a user interacts with, the trivial case describes if a user is alone or not.
Thus, this variable is often explored in mobile sensing studies, which discuss depression, mood, eating behavior,
drinking behavior, and general mental well-being [9, 14, 42, 43, 55].

Prior studies which consider the task of social context sensing often discuss ethical and technical considerations
[3] or try to contextualize the task in the broader sense of social networks and behavior of users [2]. One rather
paradoxical e�ect of the internet, which one has to consider in such an analysis, is that mobile phones function
as platforms to emulate and partially even supplant social context. This applies especially to young adults who
substitute in-person relationships with interactions over mobile phones [59]. One could therefore claim that
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"the ‘connection technology’ of the Internet [...] has in many cases increased social disconnection” [2]. However,
in this study, the task of social context inference only considers actual in-person people being present and not
virtual connections over mobile phones or social networks.

Several studies attempted the inference of in-person social context, alone or not, with sensing data. In [14]
for instance, the authors collected sensor data for eight weeks from eight people with 38 di�erent sensors.
They trained regression trees to predict if a user is alone or not and predicted on data of the same user (fully
personalized models), thereby reaching mean accuracies of 80% across users. However, the eight participants they
recruited were diagnosed with depressive symptoms. Hence, the sample size was very small, and the data did
not capture the social context of individuals who were not diagnosed with mental health-related aspects. Other
studies consider the task of social context inference in a speci�c situated context. In [43], the authors consider
the social context of university students during eating episodes. The authors argued that inferring whether an
individual is alone or not has immense value in providing timely interventions and feedback in mobile food
diaries. By using population-level models, they archive accuracy rates of 70%-75% by only using sensor data
across Switzerland and Mexico separately. However, the authors mention that the results of countries can not be
directly compared because data collection was done with di�erent sensors, in di�erent time periods, and with
di�erent protocols. In addition, the sample sizes are much smaller compared to our study. [42] examined the social
context of young adults during alcohol drinking episodes. With population-level models, they reached accuracies
in the range 80%-87% in several two-class social context inferences, including alone or not, and also alone or with
friends/family/partners. However, their study was done using a dataset collected in a single European country
and only contains the social context around drinking events. In addition, even though both these studies had
healthy participants (i.e., no eating, drinking, and mental well-being-related disorders), both studies focused on
speci�c situated contexts such as eating and drinking. Hence, the social context of young adults in daily life
moments has not been studied in prior work with smartphone sensing data. In addition, a deeper analysis of
country-level diversity and model personalization approaches has not been provided in prior work.

2.3 Leveraging Diversity Awareness
Systems that are fundamentally based on learning patterns from data (e.g., classi�cation, regression, etc.) might
be drawn to represent the internal biases present in the training data [70]. This may lead to biased predictions
depending on the gender, race, socio-economic, or psychological pro�le of new users of the given pre-trained
model. In computer vision research, the e�ect of biased learning data has already been widely discussed. One
study evaluated gender classi�cation models with respect to di�erent subgroups of genders and races [13]. The
authors found that dark-skinned women were classi�ed worse with error rates up to 34.7% while the classi�cation
error rate of light-skinned men amounted only to around 0.8%. The origin of such biases often lies in the lack of
representation in datasets used for training models.
In both ImageNet [20] and Open Images [33], which are the two most commonly used image datasets for

classi�cation, only 1% of all images originate from China, and only 2% of images come from India [56]. This
has been shown to bias model predictions when deployed in these countries [56]. Similar biases can also be
found in natural language processing, where racial and gender biases might not be as obvious and apparent as in
computer vision. Here researchers found that gender stereotypes are often encoded into word embeddings and
thus reinforce biases in text generation or text correction [12]. Other research suggests that Google Translate, a
widely popular machine translation software, consistently translates gender-neutral job descriptions to male job
descriptions in English [49]. Being aware of representation and imbalances in machine learning datasets and
outcomes improves the out-of-sample performance of machine learning systems and, more importantly, makes
them more ’fair’ [70]. In the mobile sensing literature, the assessment of diversity across datasets is challenging
because data biases are not as clearly visible as in computer vision or natural language processing. Some existing



111:6 • Mäder, Meegahapola, and Gatica-Perez

Table 2. Data summary statistics of the used dataset

country # of participants # of participants with su�cient data # of reports alone percentage
UK 72 53 26,687 69.05%
Denmark 25 17 10,058 49.63%
Italy 238 221 151,335 64.78%
Paraguay 29 24 9,745 54.52%
Mongolia 217 138 94,249 24.52%

All 581 453 292,074 51.31%

approaches suggest that splitting large, diverse datasets into smaller, more homogeneous datasets improves
computational time complexity and might even improve accuracy [1]. Going along this line of work, in the
sensing domain, even though aspects such as wearing diversity (location of wearing) of wearable sensor data has
been discussed [16], prior work has not extensively discussed the e�ect of geographical diversity on sensor-based
inference tasks [47].
One obvious approach to maximize the diversity within a dataset is to collect the mobile sensing data from

several vastly di�erent geographic locations and thereby try to increase cultural, socio-economic, and racial
diversity [54]. This has been examined in only a few prior mobile sensing studies. Khwaja et al. [31] collected
and explored mobile sensing datasets from users from �ve countries (UK, Spain, Colombia, Peru, and Chile) and
inferred the personality traits. They found that country-speci�c models outperformed multi-country models by
3%-7% for Extraversion, Agreeableness, and Conscientiousness. Two recent studies also showed that training
models for individual countries would perform better than training generic one-size-�ts-all models for all countries
in mood inference [40] and complex daily activity recognition tasks [4]. However, whether such �ndings hold
true for social context inference needs further investigation.
In light of these lines of related work, this study has novelty in the following aspects: (i) we identify smart-

phone sensing features and other behavioral and contextual aspects from self-reports that help discriminate
the social context, including a comparison across di�erent countries. This was done using a novel, large-scale,
and multimodal smartphone sensing dataset, compared to studies discussed in the literature; (ii) we examine
the feasibility of inferring social context using a generic multi-country approach, with both population-level
and hybrid models – making this one of the �rst studies to attempt social context inference with smartphone
sensing data collected from a large sample of users; and (iii) we compare country-speci�c, country-agnostic
and multi-country approaches, showing that multi-country models work �ne for social context inference, while
generalization issues persist when models are deployed to unseen countries.

3 DATASET
We used a novel smartphone sensing dataset from our previous work, that was collected in a study conducted
simultaneously in �ve countries [4, 28]. The data were collected for four weeks from college students of the
following �ve universities: Aalborg University (Denmark), London School of Economics and Political Science (the
United Kingdom), the National University of Mongolia (Mongolia), the Universidad Católica "Nuestra Señora de
la Asunción" (Paraguay), and the University of Trento (Italy). The study participants contributed three di�erent
kinds of data: (i) closed-ended questionnaires, (ii) hourly self-reports throughout the day, and (iii) sensor data.

(i) The closed-ended questionnaires consisted of three separate questionnaires, which were administered to the
study participants before the start of the study, before the start of the sensor data collection, and after two weeks
of sensor data collection. This design allowed the collection of a large amount of information from participants
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without overburdening them. The questionnaires were designed to capture surface diversity information (age,
sex, country, etc.) and deep diversity information (personality, values, intelligence, etc.— with validated scales).

(ii) During the data collection, a mobile app was deployed. Using the app sensor data were captured passively,
and participants also self-reported details about their behavior and context. These hourly self-reports were meant
to capture how people spend their time. A noti�cation was sent to participants once every hour, and they were
asked to report their current activities (studying, cooking, etc.), semantic location (home, library, etc.), mood
(valence— in a �ve-point scale from very negative to very position), and social context (alone, friends, relatives,
classmates, roommates, colleagues, partner, other). Hence, the dependent variable for the discussed alone-or-not
inference is based on the answers from the social context self-report.
(iii) The sensor data originally consisted of 34 di�erent sensors, which are divided into continuous and

interaction sensing. Continuous sensing modalities (captures sensor data regardless of user activities) included
activity type, step count, Bluetooth, WiFi, location, cellular, and proximity; and interaction sensing modalities
(measures the interactions users have with the phone) included app usage, touch events, the screen on/o� episodes,
noti�cation, etc.
In total, four weeks of sensor and self-report data were collected from study participants. However, the

completeness and the number of responses to time diaries and questionnaires vary greatly between di�erent
countries (Table 2) and di�erent users (Figure 2). Furthermore, the quality and quantity of sensor data also vary
between di�erent users. This is also observable in the amount of missing sensor data (Nan) for certain sensors or
study participants (Figure 1). A more detailed discussion about the dataset and feature extraction can be found in
papers that presented the dataset [4, 40].
The �nal analysis of this study consists of inferring the social context of a user. Given the large size of

the original dataset, which amounts to approximately 30GB of data in di�erent data formats, the sensor data
were processed and aggregated to sensible features at the self-report level. To do this, we used an approach
similar to prior mobile sensing studies where sensor data are aggregated around a time of an in-situ self-report
[5, 10, 42, 43, 55]. More speci�cally, all sensor data corresponding to �ve minutes before and �ve minutes after
each social context self-report was aggregated to features as summarized in Table 3. Thus the aggregation time
frame corresponds to a ten minutes window around the answering time of a self-report which captures the user’s
current activity, semantic location, mood, and �nally, the social context. In total, 117 distinct sensor features
were created, including 48 features that correspond to app usage time period based on app categories in Google
Playstore (e.g., action, dating, music, puzzle, social, etc.) similar to [36, 53]. Additionally, time and day features
were also included in the analysis, where the day of the week corresponds to a categorical variable, weekday
or weekend, while the time was noted with the hour of the corresponding time dairy event (a numeric value
between 0 and 23). Furthermore, missing data markers were introduced, which indicate when data is missing for
certain sensor groups [37]. In summary, the features of the �nal dataset used for inference are detailed in Table 3.

4 EXPERIMENTAL SETUP
4.1 RQ1: Situational and Contextual Aspects Around Social Contexts
The aim of this analysis was to examine various situational and behavioral cues around social context (alone or
not), that can be captured from self-reports and sensor data. This allows us to gain a holistic understanding of
the dataset and positions our work in comparison to prior work. First, the original dataset contained �ne-grained
social contexts such as alone, with classmates, with colleagues, with partner, with relatives, with roommates,
and with others. Using these labels, we examined how �ne-grained social context patterns di�er in countries
(Figure 3). Then, by considering all countries together, we examined how social context across those �ne-grained
categories di�er through the hour of the day (Figure 4). Next, since prior work has linked social context with
mood (discussed in Section 2), we did an analysis around the binary social context (i.e., alone or not) across
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Table 3. Summary tables of sensors and extracted sensor features. The sensor features are computed by aggregating ten
minutes of sensor data before and a�er a diary entry. In total, one sensor feature corresponds to 10 minutes of sensor data.

Sensor # of Features Features and Description
Location (gyroscope) 3 Radius of gyration, the sum of distance covered, altitude

Bluetooth low energy 5 Number of devices connected, mean rssi (received signal strength indicator),
max rssi, min rssi, std rssi

Bluetooth (Normal) 5 Number of devices connected, mean rssi (received signal strength indicator),
max rssi, min rssi, std rssi

Wi� 6 Number of devices connected to the device wi� hotspot, if the device is con-
nected to a wi�, wi� mean rssi (received signal strength indicator), max rssi,
min rssi, std rssi

Cellular gsm (2G network) 4 Strength of the mobile signal as de�ned by mean, max, min, std

Cellular wcdma (3G network) 4 Strength of the mobile signal as de�ned by mean, max, min, std

Cellular lte (4G network) 4 Strength of the mobile signal as de�ned by mean, max, min, std

Noti�cations 4 noti�cations posted, noti�cations removed, noti�cations posted without dupli-
cates, noti�cations removed without duplicates

Proximity sensor 4 Measures of the proximity sensor as mean, max, min, std

Activity (accelerometer) 8 Activities as classi�ed from the accelerometer data by the Google Activity
Recognition API [21]; activity still, activity tilting, activity invehicle, activity
onbicycle, activity onfoot, activity walking, activity running, activity unknown

Step counter 2 step counted, steps detected

Touch sensor 1 Number of touch events

Screen sensor 7 User presence time, screen number of episodes, screen time total, screen time
per episode, screen time max episode, screen time min episode, screen time std
episode

Apps categories 48 App categories as classi�ed by the google play tore [53]. E.g.: Action apps,
dating apps, music apps, puzzle apps, etc.

Time 2 Hour of the day, day of the week

di�erent levels of mood, captured as valence, in a �ve-point Likert scale (very positive, positive, neutral, negative,
very negative). Then, we examined how the social context di�ers across di�erent locations and while performing
various activities (5).

To assess which sensor features (including the hour of the day, and day of the week) are most indicative of
determining if someone is alone or not, independent student t-tests [32] have been performed (see Table 4). The
t-tests have been performed with the data distribution of the sensing features while a participant is alone and
while he is not alone for all �ve countries, separately. The p-values have been adjusted with the Bonferroni
correction [61]. As an additional measure, the e�ect size is estimated with Cohen’s-d estimates and the 95%
con�dence intervals [34].
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Fig. 1. Ratio of missing data (Nan values) in percentage ag-
gregated to sensor group

Fig. 2. Boxplot of the number of self-reports per user, grouped
by country. The boxes extend till the upper and lower quartiles,
themedian is indicated by an orange line, andwhiskers extend
till 1.5x IQR

4.2 RQ2, RQ3 & RQ4: Social Context Inference
To better understand the signi�cance of geographical diversity in social context inference, the central idea is
to divide the dataset into several subsets [1] according to the origin of the data [31, 43]. Countries can have
di�erent cultural and socio-economic norms, and one can assume that this in�uences the behavior of people,
their smartphone usage, and their social behavior [31]. Thus our basic assumption states that data generated by a
speci�c country is more adequately suited to train and construct a model for that speci�c country. To evaluate
this assumption, we need to compare the results of models trained on di�erent data splits. Hence, motivated by
previous literature that considered multi-country data [4, 31, 40], we used several experimental approaches:

• Multi-country: training and testing with all available countries.
• Country-speci�c: training and testing within the same country.
• Country-agnostic: training on one or more countries and testing on an unseen country.

In fact, these scenarios represent how models are trained and deployed in practice, where sometimes companies
attempt to gather representative smartphone/wearable sensor data from multiple countries to train models.
However, in cases, where such multi-country data collection is infeasible, a model would be trained within a
country (or with data from a few countries) and deployed to other countries that were not part of training the
model.

Moreover, we trained di�erent machine learning models such as logistic regression, random forest classi�ers,
XGBoost, AdaBoost, and multilayer perceptron neural networks. First, all models were run with all available
sensor features. Then, sequential forward feature selection (FS) [50] was used to select the most predictive features
for training in both country-speci�c and multi-country approaches. Further, motivated by prior work [40, 44],
we trained two types of models with di�erent levels of personalization:

• Population-level models (non-personalized): Similar to leave-k-users-out strategy—that is, data in training
and testing splits are not from the same users, ⇡ 80:20 training and testing split.

• Hybrid models (partially personalized): First, data in training and testing splits are not from the same
users, ⇡ 60:40 split. Then, add 50% of data from testing users into the training set to achieve partial
personalization for users in the testing set, leading to ⇡ 80:20 training and testing split.
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In summary, to examine RQ2, that is (i) whether a generic non-personalized model could be used to infer
social context with multimodal smartphone sensor data, and (ii) whether separating data based on countries leads
to better performance, we used multi-country and country-speci�c approaches with population-level models.
Then, to examine RQ3, which is how partial personalization a�ects model performance, we used multi-country
and country-speci�c approaches with hybrid models. Finally, to examine RQ4, that is on how models trained in
one or more countries generalize to data in an unseen country, we used the country-agnostic approach with
population-level models under two setups: Setup 1—training with data available in a single country, and testing
on all other countries, separately; Setup 2—training with data available in four countries, and testing on the
remaining country).

In all cases, data were randomly sampled ten times to obtain results for each setup, and results were averaged
to obtain the mean and standard deviation of accuracies. To deal with the class imbalance, Synthetic Minority
Over-sampling (SMOTE) [17] was used in training, while under-sampling of the majority class was done in testing
to obtain balanced testing sets. Thus, all experiments are to be evaluated against a baseline of 50%. Given run time
restrictions, GPU implementations of the models were used. All models were run in python with commonly used
libraries such as scikit-learn [46] for logistic regression and Ada Boost, cuml [52] as it implements a random forest
model on the GPU, and lastly, a python XGBoost implementation [19]. Finally, in all cases, the hyper-parameter
search was done using Grid Search (e.g., random forest: number of trees, max depth, min sample split; XGboost:
learning rate, min split loss, max depth, reg lambda, etc.). For neural networks, four layers were used, with 256,
256, and 128 in hidden layers. Further, we used the relu activation function in hidden layers and the sigmoid
activation function in the output layer. Moreover, we used adam as the optimizer and dropout for regularization
(keep prob of 50%, 50%, and 70% respectively) to avoid over-�tting. Models were trained with 100 epochs.

Moreover, behavioral sensor data are often extremely sparse and tend to have high amounts of missing data
[66]. Missing data in this dataset can correspond to several distinct cases: (i) a sensor malfunction, (ii) the sensor is
broken or none existent, and (iii) the intentional disabling of the sensor by the user (e.g., disabling Bluetooth/WiFi,
setting the phone to �ight mode, etc.). However, those cases are hard to distinguish solely with the available
sensor data and are thus all treated equally, similar to previous studies [48, 57]. The proportion of missing data
also depended on the sensor (see Figure 1) and on the country in which the experiment was conducted (60%
of Mongolian sensor data is missing). To deal with missing data, �rst, all sensor groups with more than 90% of
missing data have been dropped, similar to prior work [53]. This only corresponds to the ’cellular_gsm’ features
(see Figure 1). The rest of the missing observations were estimated with the k-nearest-neighbor (kNN) algorithm
[66, 69], with k experimentally determined to be optimal at two. As discussed in prior work [4, 66, 69], the
estimation was done for the training set, and the learned model was used to �ll in missing data in the testing
sets. To preserve the information which might be encoded in the missing entry of a given sensor group, binary
markers were used to indicate that the data has been interpolated [37].

5 RESULTS
5.1 RQ1: Situational and Contextual Aspects Around Social Contexts
As shown in Table 2, the number of study participants and self-reports varied according to where the pilot study
was conducted. Overall 581 participants of the study provided ‘social context’ self-reports and also provided usable
sensor data. The number of self-reports per participant varied greatly depending on the individual participant
and the country. As can be seen in Figure 2, the median number of self-reports per participant varied between
200 (Denmark) and 800 (Italy). On average, participants provided around 300 to 400 self-reports. Some users
provided well above 1000 self-reports, while some users provided close to zero self-reports, even after providing
sensor data for many days. To make sure there is enough data for model personalization, users with less than 100
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Fig. 3. Distribution of social context across countries, as a ratio of the total number of self-reports.

Fig. 4. Social context distribution according to the hour of the day, across all participants.

self-reports or less than six observations of the minority class were excluded from the analysis, resulting in 453
participants for the analysis (see Table 2).

The distribution of the social context depends heavily on the respective country, as can be observed in Figure
3. For most countries, besides the curious exception of Mongolia, people were predominately alone. However, in
Mongolia, people were with their families in over 60% cases. This indicates di�erent cultural practices concerning
living arrangements or family contact. What we can state with certainty is that in the dataset, the country of a
participant highly in�uenced the distribution of the social context types (i.e., alone, with family/friends/partner,
etc.). In Denmark and the UK, for instance, participants seemed to have spent more time with their partner (even
more than with their families). Country-speci�c di�erences in the frequencies, quality, and kind of social context
are also supported by literature from the life sciences [58]. However, it is also important to mention that there
seems to be quite some variability between individual study participants as indicated by the 95% intervals in
Figure 3.

Besides the country-speci�c e�ect on the frequency and kind of social context of participants, a time-speci�c
e�ect was also observed. Figure 4 shows the distribution of social context depending on the hour of the day.
Participants seemed to be mostly alone or with their romantic partner during the morning hours. During lunch and
dinner, people tend to spend time (i.e., eating) with their family. Further, in Figure 5, we show the co-occurrences
of speci�c moods (positive and negative valence), activities, and semantic locations, with the social context
(alone-or-not). There does not seem to be an obvious relation between the valence of participants and their social
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(a) Valence (b) Semantic Location

(c) Concurrent Activity

Fig. 5. Alone or not alone depending on a) Valence, b) Semantic Location, and c) Concurrent Activity of the participants.

context. This is surprising as prior research suggests a strong link between valence and social context, especially
between valence and being alone or in a group [45].
In terms of concurrent activities and being alone or not, activities such as studying, listening to lectures,

sleeping, and personal care were done predominantly alone, whereas obvious social activities such as family care,
eating, and fostering one social life were done with other people. Lastly, participants spent most of their time alone
at home. This, again, might be heavily in�uenced by the pandemic and remote work and study environments
[26]. In terms of gender-speci�c di�erences, there were no huge divergences between men and women. Men
were alone more, with 54.6% of all self-reports, while women reported of being slightly less alone, with 49.1% of
all self-reports. Women also spent more time with their family, with an average of 31.6%, which is approximately
5% more than men. All other di�erences between women and men were minor (see Table ?? in Appendix). This is
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Table 4. Top ten t-statistics of sensing features to infer the alone-or-not social context depending on country with: t-value,
p-value with Bonferroni correction ( 10�4 : ⇤⇤⇤⇤), Cohen’s d and 95% confidence intervals of Cohen’s d.

feature t-statistic Cohen’s-d [95% CI] feature t-statistic Cohen’s-d [95% CI]

U
K

app_tools 16.88**** 0.239 [0.212, 0.264]

Pa
ra
gu

ay

activity_invehicle 12.71**** 0.363 [0.323, 0.403]
cellular_wcdma_nan_marker 13.93**** 0.180 [0.154, 0.206] wi�_num_of_devices 10.82**** 0.254 [0.214, 0.294]
app_nan_marker 12.63**** 0.189 [0.163, 0.215] location_altitude 10.58**** 0.260 [0.220 , 0.301]
screen_num_of_episodes 11.87**** 0.159 [0.133, 0.185] bluetooth_le_min_rssi 10.18**** 0.231 [0.192, 0.272]
time 11.19**** 0.153 [0.127, 0.179] bluetooth_nor_min_rssi 9.93**** 0.181 [0.162, 0.242]
cellular_lte_max 10.08**** 0.153 [0.127, 0.179] day 8.82**** 0.181 [0.141, 0.221]
cellular_lte_mean 9.46**** 0.153 [0.127, 0.179] activity_onfoot 7.62**** 0.168 [0.128, 0.208 ]
proximity_std 8.29**** 0.134 [0.108, 0.160] activity_walking 7.61**** 0.167 [0.127, 0.207]
day 8.21**** 0.109 [0.083, 0.135] activity_running 5.75**** 0.122 [0.082, 0.162 ]
wi�_nan_marker 7.54**** 0.103 [0.077, 0.128] activity_onbicycle 5.75**** 0.122 [0.082, 0.162]

D
en

m
ar
k

app_tools 24.44**** 0.530 [0.490, 0.570]

M
on

go
lia

app_productivity 32.40**** 0.272 [0.258, 0.288]
proximity_max 14.78**** 0.368 [0.329, 0.408] location_altitude 19.95**** 0.151 [0.136, 0.166]
location_altitude 14.70**** 0.503 [0.464, 0.543] app_social 18.80**** 0.142 [0.127, 0.157]
proximity_std 14.20**** 0.355 [0.315, 0.394] activity_onfoot 16.33**** 0.123 [0.108, 0.138]
app_communication 13.94**** 0.290 [0.251, 0.329] activity_walking 16.22**** 0.122 [0.108, 0.138]
wi�_max_rssi 13.80**** 0.283 [0.244, 0.323] activity_walking 16.22**** 0.123 [0.108, 0.138 ]
proximity_mean 13.61**** 0.323 [0.284, 0.362 ] activity_still 14.65**** 0.111 [0.096, 0.126 ]
wi�_mean_rssi 10.93**** 0.227 [0.188, 0.266] touch_events 12.65**** 0.096 [0.081, 0.111]
day 10.16**** 0.203 [0.164, 0.242 ] user_presence_time 11.53**** 0.087 [0.072, 0.102]
bluetooth_le_num_of_devices 10.15**** 0.252 [0.212,0.291 ] bluetooth_nor_min_rssi 11.07**** 0.084 [0.069, 0.099]

It
al
y

time 51.39**** 0.282 [0.270, 0.292]
A
ll

screen_nan_marker 80.95**** 0.309 [0.302, 0.316]
app_tools 29.12**** 0.165 [0.154, 0.175] proximity_nan_marker 70.89**** 0.268 [0.260, 0.275]
bluetooth_nor_max_rssi 28.10**** 0.155 [0.145, 0.166] location_altitude 67.45**** 0.293 [0.286, 0.300]
day 27.68**** 0.150 [0.139, 0.161] bluetooth_le_nan_marker 56.68**** 0.201 [0.194, 0.209]
bluetooth_le_num_of_devices 22.69**** 0.141 [0.131, 0.152] steps_counter_nan_marker 55.86**** 0.204 [0.197, 0.212]
bluetooth_le_num_of_devices 22.69**** 0.142 [0.131, 0.152] bluetooth_nor_nan_marker 55.58**** 0.198 [ 0.191, 0.205]
bluetooth_nor_mean_rssi 20.34**** 0.112 [0.102, 0.123 ] wi�_nan_marker 52.92**** 0.197 [0.190, 0.204]
bluetooth_nor_num_of_devices 18.44**** 0.110 [0.099, 0.120] location_nan_marker 52.07**** 0.194 [0.187,0.201]
bluetooth_le_max_rssi 17.06**** 0.094 [0.083, 0.104] time 49.58**** 0.185 [0.178, 0.192]
location_altitude 14.72**** 0.086 [0.075, 0.096 ] app_nan_marker 48.58 0.188 [0.181, 0.195]

in line with research, which suggests that young men tend to be more alone [7]. The authors, however, underline
that being alone is correlated with a wide range of factors like culture, geography, age, and many other covariants
[7].
Considering the statistical analysis, as presented in Table 4, the top ten indicative sensor features in terms

of statistical signi�cance per country can be quite di�erent. For example, while time and day seemed to be
quite indicative in Italy for the social context, it is hardly indicative in Paraguay or Mongolia. Similarly, activity
(accelerometer) features were highly indicative for Paraguay (in a vehicle) and Mongolia (moving) but not so
much for other countries. In Italy, Bluetooth usage seems to be highly predictive of social context, which is
in line with a previous study that only relied on Bluetooth sensors to predict social context (co-location) [67].
Considering the data from all countries combined into a multi-country data pool, especially the Nan markers
seem to have a high relevance in determining if someone is alone or not. Of the top ten most indicative features
for the world data (see Table 4), eight are Nan markers. However, this high relevancy of Nan markers in the
multi-country data is di�cult to interpret given the multiple reasons for the missing sensor data [48, 57]. In
general, we could assume that the great heterogeneity of features across di�erent countries may re�ect the large
geographical diversity in behavior and phone usage [31] (re�ected in sensor data) as well as the target variable
[7] (re�ected in the social context).

5.2 RQ2: Social Context Inference Without Personalization
This section examines whether social context can be inferred with smartphone sensing data (RQ2). A comparison
of the obtained results can be seen in Table 5. Overall, in the generic multi-country setup, the random forest



111:14 • Mäder, Meegahapola, and Gatica-Perez

Table 5. Di�erent machine learning models and their inference accuracies with standard deviations in brackets according to
di�erent countries.

Logistic (L2) Random Forest XG Boost Ada Boost Neural Network
� (�f ) � (�f ) � (�f ) � (�f ) � (�f )

Baseline 50 50 50 50 50

Multi-Country 56.96 (10.8) 62.21 (2.73) 61.89 (3.20) 60.24 (4.63) 61.65 (3.27)

UK 54.44 (4.44) 58.35 (3.74) 58.04 (4.31) 57.52 (5.00) 58.31 (4.61)
Denmark 56.45 (6.37) 59.05 (8.11) 55.83 (7.57) 59.31 (8.40) 60.21 (5.19)
Italy 56.89 (4.08) 60.99 (1.65) 60.55 (1.85) 60.02 (2.11) 60.13 (1.98)
Paraguay 58.22 (8.00) 64.07 (9.71) 62.74 (8.81) 61.36 (9.59) 63.03 (6.21)
Mongolia 55.89 (3.96) 65.32 (4.21) 65.56 (4.29) 59.48 (3.96) 63.62 (5.17)

Fig. 6. Comparison between Random Forest with feature selection and without feature selection with accuracy and standard
deviation of accuracy according to di�erent countries and the total data distribution (world model).

models performed the best, while having one of the smallest standard deviations. This performance is around
0.5% higher than XGBoost and Neural Networks. Thus all subsequent experiments were reported for random
forest models, for brevity. The test accuracy of the random forest lies, depending on the country, between 58%
and 65%. However, given the small dataset size for some countries (e.g., Only 17 participants in Denmark, and
24 participants in Paraguay) and a large number of features, we used feature selection to examine whether the
performance could be improved.

In Figure 6, the accuracies of di�erent country-speci�c models are compared with and without feature selection.
The accuracies are improved depending on the country and thus depending on the number of participants, by
between 1% (Italy) and 4.5% (Paraguay). This lower performance increase can be explained given that random
forest classi�ers already use embedded feature selection within models during the training phase. Hence, using
explicit feature selection before training has little e�ect [40]. However, even for other model types we examined,
we did not observe better performance bumps. Further, the optimal number of features depended on the country,
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Fig. 7. Comparison between country-specific and multi-country approaches with leave-k-user-out (population-level) and
personalized (hybrid) models.

but seems to lie a little bit above 30. In fact, the �nal feature counts used in training were 31 in the UK, 32
in Denmark, 36 in Italy, 30 in Paraguay, 36 in Mongolia, and 90 in Multi-Country. Interestingly, compared to
country-speci�c models with lower feature counts, feature selection in the multi-country approach retained
over 90 features, showing that when data from diverse countries are used to train a single model, more features
are required for better representation. In a way, the analysis in Table 4 showed that features with the highest
statistical signi�cance among countries are not the same. This could be why many features are retained when
training the multi-country model. In fact, this again reinforces the idea that di�erent cultural and social practices
in di�erent countries a�ect the performance of social context inference models.

5.3 RQ3: E�ect of Partial Personalization on Model Performance
Next, we set out to examine how model personalization a�ects performance. In Figure 7, population-level and
hybrid models are compared for all countries separately, with the multi-country model. In all cases, we compare
the performance after feature selection. First, results show that personalization leads to improved performance
across all countries and the multi-country approach. The increase in performance is ⇡20% in all cases. Prior work
in areas such as mood inference and eating behavior prediction too has shown that smartphone sensing-based
models could perform well after personalization [6, 36, 40]. Hence, not surprisingly, we found a similar result for
social context inference as well. The drastic increase in model performance of the personalized models indicates,
that social interactions seem to be an extremely personal behavior with high variability from user to user. This
observation motivates further investigation into the conceptualization and modeling of human diversity within
sensing models. By more precisely modeling human diversity in a leave-k-user-out model and with some basic
diversity information of a new user, one could possibly create a quasi-personalized model without having any
sensing data of a new user.

In fact, the weighted average accuracy (weighted by the number of data points) of the country-speci�c models
is 64.12%, above the multi-country performance of 62.35% in the population-level setting, even though by a
small margin. A similar result can be seen for hybrid results as well. However, one has to consider that the
standard deviations (obtained by repeating experiments for ten iterations—Explained in Section 4), and therefore,



111:16 • Mäder, Meegahapola, and Gatica-Perez

Fig. 8. Country-agnostic: Model accuracy when using data of four countries in training to predict on the fi�h unseen country.

the weighted average of country-speci�c models’ variabilities (7.12%) is clearly larger than that of the multi-
country model (4.12%). This is partially explainable given the small number of participants in some countries
(e.g., Denmark, Paraguay). Moreover, hybrid model performance reached above 82% across all countries and
the multi-country setup, showing the e�ectiveness of model personalization to obtain better performance for
social context inference. In conclusion, we �nd that training a multi-country model works reasonably well
for social context inference. This �nding is di�erent compared to prior work that examined country-speci�c
and multi-country model performance across mood inference, personality inference, and activity recognition
[4, 31, 40], where they found multi-country models to underperform by larger margins. However, it is not the
same case with social context inference.

5.4 RQ4: Generalization of Models to Unseen Countries
The multi-country model has access to more data and at the same time, to all the country-speci�c characteristics.
Thus, it is di�cult to ascertain if the di�erences in accuracies between the multi-country and country-speci�c
models are driven by the di�erent amounts of data or by the country-speci�c data heterogeneity. Prior work
on personality modeling and mood inference has discussed how this could be a di�cult problem to provide an
answer to when working with multi-country data because even if under-sampled models (using the same amount
of data from each country in training country-speci�c models. usually, the amount of data is equal to the number
of data points from the country with the lowest amount of data) are trained with each country, it could lead to a
lack of expressiveness within countries [31, 40].

Hence, to get a better sense of how the data heterogeneity associated with a speci�c country helps to detect the
behavior of its participant and what kind of e�ect additional data has on inference accuracies, another experiment
is conducted. First, this experiment takes the data of four countries and tests it on the �fth unseen country,
therefore creating a country-agnostic approach where the model has not seen any data of the country it is tested
on. This mimics a situation where an application is trained and constructed for a set of countries and then enters
a new market in a di�erent country. The results of this experiment can be seen in Figure 8. The accuracies of
those data-rich but country-agnostic models lie consistently below the country-speci�c models, even though the
margins are not signi�cant. The extent of the accuracy di�erence between country-agnostic and country-speci�c
approaches is the lowest in Denmark (� 1.5%), the country with the least amount of data, and highest in Mongolia
(� 8.5%), a country with a high amount of data.
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Table 6. Country-agnostic: Using the countries in the le� column, to predict data from the countries on the top row, with
accuracies and standard deviation of accuracies. Values along the diagonal are grayed out as they came from the performance
obtained in Figure 6, with feature selection under the country-specific approach.

Testing Country UK Denmark Italy Paraguay Mongolia
Training Country
UK 62.82 (3.18) 53.34 (7.85) 57.05 (1.86) 58.89 (6.76) 52.83 (2.83)
Denmark 51.22 (3.83) 62.92 (8.49) 53.73 (2.25) 53.78 (2.25) 51.07 (3.54)
Italy 57.10 (2.76) 58.80 (6.52) 62.03 (2.35) 52.64 (6.3) 53.14 (3.66)
Paraguay 53.77 (5.58) 51.94 (5.96) 53.11 (2.64) 68.68 (11.93) 55.88 (5.54)
Mongolia 52.14 (2.36) 53.34 (5.97) 51.70 (1.55) 58.24 (6.33) 67.33 (4.58)

At last, another experimental setting was explored, where data from one country was used to train a model,
which then is tested on all the other countries separately. Results are presented in Table 6. This helps to investigate
the geographical proximity between di�erent countries and how it translates to social context inference models.
In the resulting matrix, the rows represent the training countries while the columns represent the testing country
(e.g., using UK data to test in Denmark yields 53.34% accuracy). Here it is interesting to note that culturally close
countries seem to extrapolate better to each other in one case. For instance, it can be seen that Italian data also
works comparatively well for the UK and Denmark, while it does not perform very well for Paraguay or Mongolia.
However, this pattern did not generalize to models trained in Denmark and UK, when testing in other European
countries. This �nding contrasts prior research on mood inference and complex daily activity recognition in
a multi-country setting [4, 40], where the authors found models performing reasonably well when testing in
geographically similar countries in Europe. However, similar to those studies, and also another study [65], we
observe a performance degradation, which could be due to distributional shifts between countries. Moreover,
Mongolia seemed to be a di�cult country to predict without Mongolian data in training. If we test on Mongolia
with a model trained with Mongolian data, we could reach a mean accuracy of 67.33%. However, if any other
countries’ training data is in model training, the maximum accuracy that could be reached was 55.88%, with a
model trained on data from Paraguay. This is a di�erence of around 12%, whereas, for all other countries, the
di�erences were around 5%. This di�erence could either be due to the distributional di�erences in sensor data
across countries or the di�erences in the target attribute—the social context. In fact, in Figure 3, we found that
the social context distribution in Mongolia is di�erent from all other countries, with the presence of fewer alone
self-reports. Hence, this could potentially be a reason for the inference performance here.

6 DISCUSSION
6.1 Summary of Results
In summary, our results shed light on the research questions as follows:
• RQ1: We conducted an extensive examination of a smartphone sensing dataset collected in the natural
environment from 483 college students across �ve distinct countries: the United Kingdom, Denmark, Italy,
Paraguay, and Mongolia. The dataset encompasses passive sensing data obtained through continuous sensing
modalities, including activity type, step count, Bluetooth, WiFi, location, cellular, and proximity, as well as
interaction sensing modalities, such as app usage, touch events, a screen on/o� episodes, and noti�cations. The
dataset further comprises over 216K social context self-reports gathered from participants over a period of
four weeks. Our statistical analysis revealed that certain individual features extracted from modalities, such as
app usage type and amount (classi�ed into categories such as tools, communication, productivity, and social),
activity types (e.g., in a vehicle, on foot, walking), location altitude, Bluetooth, WiFi, proximity, and screen
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episodes, were among the top �ve features in terms of statistical signi�cance in discriminating between alone and
not-alone events. Furthermore, we discovered that the features with statistical signi�cance in the discrimination
of social contexts are not uniform across countries, demonstrating the diversity of behaviors within countries
and contextual features related to di�erent social contexts.
• RQ2: In our study, we operationalized three approaches to assess the inference of social context (as described
in Table 1). These approaches are country-speci�c, country-agnostic, and multi-country. Without accounting for
the diversity of data sources at the country level, we found that the generic multi-country approach exhibits a
moderate accuracy of 62.21% without feature selection and 62.35% with feature selection when using population-
level models. The country-speci�c approach resulted in comparable performance to the multi-country approach,
with most countries displaying margins of less than 2% for both with and without feature selection. The exception
was Italy, which had an accuracy of 62.03% compared to the multi-country accuracy of 62.35%. All other countries
achieved slightly higher accuracies that exceeded multi-country performance. This outcome contradicts prior
studies that utilized similar multi-country datasets for health-related inferences, which suggested that country-
speci�c models were generally superior by substantial margins. As a result, we concluded that this may not
always hold true for social context inference.
• RQ3: In our study, the utilization of hybrid models resulted in the multi-country approach yielding an accuracy
of 83.45%. The exception was the United Kingdom, which achieved an accuracy of 82.08%, while all other countries
performed better, with marginal di�erences in Italy (84.20%) and Paraguay (83.76%) and larger di�erences in
Denmark (88.72%) and Mongolia (87.47%) of approximately 5%. These results suggest that, regardless of the degree
of personalization, a generic multi-country model is su�cient for social context inference, and country-speci�c
models may o�er minor gains in some instances. This �nding also contradicts prior studies that employed
smartphone sensor data for health-related inferences, which recommended the use of country-speci�c models
for improved performance, even after personalization.
• RQ4: With regards to mood inference and activity recognition, despite prior research indicating that models
may exhibit good generalization to geographically proximate countries in Europe, our analysis of social context
inference performance did not reveal such associations. In fact, in all cases, the models performed poorly when
applied to unseen countries. This �nding is consistent with prior studies, which concluded that models lack
generalization capabilities when deployed to previously unseen countries compared to the performance of
country-speci�c or multi-country approaches.

6.2 Implications
This paper discusses the operationalization and achieved performance of a social context inference task in a
multi-country setting. The presented work o�ers theoretical and practical implications.

Theoretical implications of the present study are manifold. Firstly, we propose an experimental framework for
the implementation and comparison of social context inference experiments in a multi-country context. The
experiments conducted include approaches that are country-speci�c, country-agnostic, and multi-country. These
experiments provide insights into the extent to which country-speci�c social context information is encoded in
multimodal sensing data and whether this information can enhance model performance. In future health sensing
research that explores multi-country settings, the experimental framework used here may be adopted to ensure
comparability across studies, thus facilitating cross-dataset comparisons. Secondly, our �ndings indicate that
country-speci�c models outperform multi-country models by only a marginal degree. This contradicts previous
research on mood inference and activity recognition, which suggested that country-speci�c models are superior
to multi-country models. However, given the complexity of the data collected during the Covid-19 pandemic
and other data limitations, the results presented here are not de�nitive. Consequently, future studies should
examine the impact of country diversity on model performance in context-aware sensing tasks, paying attention
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to cultural practices that may drive di�erences in social behavior and that may be apparent in the multimodal data.
Thirdly, our results demonstrate the importance of personalization for the social inference task. Hybrid models
outperform population-level models by a large margin, suggesting that users exhibit signi�cant di�erences in
social behavior. Consequently, future studies should take note of the signi�cance of collecting su�cient data
from individual users to enable personalized models to be implemented.
The practical implications of this study for real-world applications are threefold. Firstly, let’s consider the

context of a mobile health application that includes a social context inference model. The low accuracy of mobile
interventions using population-level models may be particularly problematic for new users of such applications,
whomay receive noti�cations in the wrong situations. Therefore, like manymobile health apps that do not provide
insights based on inferences for several months because of the lack of personalization [? ], the social context
inference feature could be disabled initially and only enabled after the model is �ne-tuned and personalized for a
particular user. Furthermore, users may not desire interventions, as being alone do not necessarily correspond to
feeling lonely. Secondly, applications should be designed to monitor social context over a long period of time.
Health monitoring applications could provide users with information regarding their social context over time.
This information could inform users about perceived loneliness and the actual amount of time spent alone. If
necessary, users could then decide for themselves whether they would like to alter their social behavior. Thirdly,
social context models could be pre-trained with a large dataset from potentially several di�erent countries and
subsequently personalized using data provided and labeled by users themselves. This approach would ensure
high accuracy in inferring the social context of individual users.

6.3 Limitations and Future Work
Several considerations are needed to assess and contextualize the results of this study fairly. Those considerations
concern the data generation process, ethical questions, experimental setup, and any implications which can be
drawn from this study.

All data used for this study was generated in a time frame from November to December 2020. This coincides
with a major surge of the Covid-19 pandemic in Europe but also in Paraguay and Mongolia. In all countries, social
distancing measurements were mandated or at least recommended. Obviously, the COVID pandemic deeply
in�uenced and possibly altered the behaviors, social practices, and moral norms of the pilot study participants. It
is, however, highly di�cult to measure or infer how those changes in�uenced the analyzed data. It is likely that it
changed the frequency of social contexts (fewer reports being done with others), but it is impossible to say if
and how it precisely changed social interactions if they occurred and how this, on the other hand, in�uenced
the mobile sensing data produced. On the other hand, given that many universities and companies are already
adhering to remote work/study settings, we expect this trend to continue for the years to come. Hence, despite
the study being done during the pandemic, we expect these results to hold in the future to an extent. However,
future studies could explore this further.

The underlying motivation of this study lies in detecting, analyzing, and potentially intervening in periods of
the social context of mobile phone users. This is, at its core, a mental well-being concern given the straightforward
connection between social isolation, loneliness, and mental health of especially young adults [59]. The presented
study and preceding studies [9, 14, 42, 43], showed that mobile sensing data contains information about the social
context of people. Given the sensitive nature of the user data and the sensitive nature of the discussed inference
task, the ethical implications of this study are apparent and many-sided. The fact that this study discusses the
social context of young people in di�erent cultural and socio-economic environments complicates the moral
implication additionally. The fact that many participants have contact with their romantic partner during the
night time or early morning hours, for an instant, might be di�erently socially accepted depending on the cultural
norms of a given study participant. The mentioned ethical considerations pose clear data safety and anonymity
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requirements to the dataset and its investigators [28]. At the same time, moral norms and data safety fears of
study participants might also in�uence if a participant �lls out a questionnaire correctly or at all.

This study considers only the two-class social context inference task of predicting if someone is alone or not.
In principle, however, the used dataset di�erentiates between 8 di�erent social contexts. The decision to limit
this analysis to a two-class inference is mostly caused by class imbalance and page limits. First of all, the alone or
not alone situation is well populated in all country data subsets, which is not necessarily given for any other
two-class social context (e.g., with family, without family would not be well represented in Denmark). Thus to
obtain comparable results across all countries, only this most naive social context was exhaustively investigated.
Furthermore, feasibility reasons also tempered further experiments with other social context inference tasks. The
accuracy of the most simple social inference task lies at minimally 62%, in the case of, for example, Italy, already
quite low; thus, it can be assumed that models would perform even worse on more di�cult social inference tasks.
Future work could explore other constructs of social context.
The results presented in the personalization section show us that social behavior di�ers greatly from user

to user. This indicates that even leave-k-users-out models could be greatly improved if user pro�les or speci�c
user groups could be more precisely modeled. This study tries to model di�erent user subgroups according
to their country of residence and assumes similar cultural and social behavior of people living in the same
country. However, with additional diverse information about the users, for example, socio-economic background,
psychological pro�le, and individual cultural norms, models could be potentially even more improved. This would
open the possibility of constructing partially personalized models on a set of diverse information provided by
a new user. Future work should try to leverage user diversity information further to improve mobile sensing
models.

7 CONCLUSION
In this study, we examine, study, and try to predict the social behavior of close to 500 college students across 5
di�erent countries. An in-depth analysis of di�erent diversity concepts is conducted by comparing a multitude of
models trained on di�erent subsets of the data. The most fundamental data split compares a model trained only
on one country’s data to a world model trained on all available data from all countries. We �nd that a model
which is trained only on the data of a speci�c country outperforms the world model by approximately 2%, despite
country-speci�c models having signi�cantly fewer data available than the world model. A model which is trained
exclusively on data from countries other than from the test country is outperformed by country-speci�c models
by an average of 8%. Depending on the model speci�cation we reach accuracies ranging from 62% to 68% in
predicting if a user is alone or not. Personalized models achieve accuracies ranging between 80% to 90%.
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