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ABSTRACT While the task of automatically detecting eating events has been examined in prior work using
various wearable devices, the use of smartphones as standalone devices to infer eating events remains an open
issue. This paper proposes a framework that infers eating vs. non-eating events from passive smartphone
sensing and evaluates it on a dataset of 58 college students. First, we show that time of the day and features
from modalities such as screen usage, accelerometer, app usage, and location are indicative of eating and
non-eating events. Then, we show that eating events can be inferred with an AUROC (area under the receiver
operating characteristics curve) of 0.65 using subject-independent machine learning models, which can
be further improved up to 0.81 for subject-dependent and 0.81 for hybrid models using personalization
techniques. Moreover, we show that users have different behavioral and contextual routines around eating
episodes requiring specific feature groups to train fully personalized models. These findings are of potential
value for future mobile food diary apps that are context-aware by enabling scalable sensing-based eating
studies using only smartphones; detecting under-reported eating events, thus increasing data quality in self
report-based studies; providing functionality to track food consumption and generate reminders for on-time
collection of food diaries; and supporting mobile interventions towards healthy eating practices.

INDEX TERMS Smartphone sensing, mobile sensing, eating behavior, food diary, mobile health, automatic
dietary monitoring, diet monitoring, eating event, eating episode, machine learning, personalization.

I. INTRODUCTION
According to prior work in nutrition science and public
health, unhealthy eating practices could lead to severe con-
ditions such as heart disease, diabetes, high blood pressure,
and high cholesterol [1]–[3]. Hence, understanding the eti-
ology and managing eating behavior is crucial. Fueled by
such motivations, researchers have come up with different
techniques to detect and monitor food intake, among which
keeping food diaries (also known as food journaling and
food logging) is one of the most common ones [4]. On an

The associate editor coordinating the review of this manuscript and

approving it for publication was Giuseppe Desolda .

individual level, food diaries help users with self-awareness,
self-monitoring, and behavior change, and have also helped
people with weight loss goals [4], [5]. At the population
level, they help researchers to conduct large-scale studies
to understand population-level food consumption [4]. Food
diaries originated as a pencil-and-paper based technique [6],
but in recent times mobile food diaries have become popular,
and widely adopted commercial mobile health (mHealth)
apps such as Samsung Health [7] and MyFitnessPal [8] allow
users to keep food diaries and facilitate mindful eating.

While keeping a food diary has many benefits, it is dif-
ficult to sustain the practice of reporting all food intake
over long periods due to a plethora of personal, societal,
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and technological factors such as forgetting to report food,
losing motivation to report, and self and recall biases
(e.g,, not reporting all eating events intentionally)
[4], [5], [9]. Such drawbacks have called for tools and
techniques to automatically recognize eating events, as this
would allow reminding users to report food intake on time.
Prior studies in mobile sensing have used wrist wearables [5],
[10], [11], jaw-bone wearables [12], earables [3], [13], neck-
laces [14], [15], and other sensing modalities [16], [17] to
detect eating by sensing wrist movements, bites, swallowing,
and mastication among many other actions. While most of
these techniques have shown promising performance in lab
settings, some have also performed reasonably in everyday
life conditions. However, these techniques require specific
hardware configurations and wearables to be worn, which
might be both a hassle for some users and unaffordable for
others. Furthermore, wearable-based eating detection sys-
tems would have to maintain a connection with smartphones
to automatically trigger actions on the phone, which requires
bluetooth, wifi, or data connections to be kept turned on.
As wearables are known for low battery life, the need to run
continuously could drain the battery even faster. In contrast,
recognizing eating events directly on the smartphone could
address some of these usability and technical issues. More-
over, unlike wearables, smartphone coverage and mHealth
app usage are already high in many countries [18]. For
example, 96% of young adults aged 18-29 in the United
States own a smartphone [19], and Nutrition and Diet apps
has become the second most common app category among
mHealth app users, just behind Fitness apps [18]. Prior
studies in mobile sensing have looked into improving mobile
food diaries with context-awareness [9], [20]–[22]. However,
whether smartphones alone be used to recognize eating events
remains an open question. Considering these aspects, sensing
eating events on smartphones could provide the following
benefits:
Automatic Food Intake Tracking and Reminders: Keeping

mobile food diaries manually can be cumbersome as people
tend to forget to report [23]. Automatic eating event recog-
nition could, on the one hand, keep track of eating events to
provide feedback and remind users to report forgotten eating
events. If such inferences were combined with other infer-
ences such as food type [20], social context [21], or food con-
sumption level [9], a holistic food diary could be maintained
with minimal user input. This vision has been discussed in
prior dietary monitoring [23] and sensing [24] literature.
Self-Report Validation: A challenge in self-report-based

questionnaires is under-reporting, i.e., participants failing to
report eating events [23]. In the context of mobile food
diaries, when an actual eating event is incorrectly considered
as a non-eating event, it adds noise to the data, which can be
detrimental when training machine learning models. A low-
cost smartphone-based system that could estimate if a period
contained an actual eating or non-eating moment could filter
out highly confident self-reports from noisy reports. This
would lead to higher quality labels for public health studies

and for training machine learning models in research and
commercially available food diaries.
Mobile Interventions: After determiningwhether someone

is eating or not, many subsequent inferences to determine the
behavior and context of eating could be made [9], [20]–[22].
These inferences could help provide context-aware inter-
ventions and feedback to app users [23]. More importantly,
sensing eating events with the phone could be done without
relying on external wearables, possibly reaching larger and
more diverse populations.
Population-Level Studies: Smartphone-only inferences

could make it easier for nutrition scientists and dietitians to
conduct population-level eating studies among larger pop-
ulations, without the need for additional hardware such
as wearable devices. Current population-level eating-related
studies are predominantly done using self-reports. Some
drawbacks of such studies, related to participant burden and
attention limits of self-reports, could be addressed by auto-
matically detecting eating events. Prior work has discussed
the use of wearables for automatic dietary monitoring in
population-level studies [23]. Furthermore, a recent study
discussed the detection of eating events using wearables to
trigger further data capture on mobile food diaries [25]. How-
ever, conducting large-scale studies using additional wearable
devices is expensive. Hence, the proposed method, based
solely on smartphone sensing, could be helpful for nutrition
researchers and dietitians to overcome issues in current meth-
ods, and facilitate the implementation of population-level
studies by automatically inferring eating events.

In summary, while the characterization of eating has been
attempted in the smartphone sensing domain (social con-
text [21], food consumption level [9], food category and
type [20]), the use of smartphones as standalone devices to
infer eating events remains as an open issue. In this paper,
we examine whether smartphone sensing features could be
used to classify time windows as corresponding to eating
vs. non-eating events using subject-dependent, hybrid, and
subject-independent machine learning models [26].

We pose two research questions:
RQ1:What situational contexts and behaviors around eating
and non-eating events can be observed by analyzing everyday
eating events of a group of college students obtained via
passive smartphone sensing?
RQ2: Can eating and non-eating events be inferred by only
using passive smartphone sensing?

By addressing the above research questions, this paper
provides the following contributions:
Contribution 1:We analyzed how passive smartphone sens-
ing features differ for eating and non-eating in everyday life
situations. As a case study, a dataset of over 12000 events
provided by 58 college students in Mexico is used. We show
that features from modalities such as application usage,
accelerometer, location, and time of the day are informative
of eating and non-eating events.
Contribution 2: We define and evaluate the task of infer-
ring eating and non-eating events using passive smartphone
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sensing data, obtaining an AUROC of 0.65 with subject-
independent models, which can be increased to 0.81 with
subject-dependent models. Moreover, we show that feature
selection plays a key role when training subject-dependent
models. Each user might need models that use different
features (compared to others) to achieve high performance.
This shows the behavioral diversity of people around eating
and the need to consider such diversity in building machine
learning models that recognize eating events. We also found
that hybrid models (partially personalized) perform reason-
ably well and on par with subject-dependent models. The
results illustrate the potential of using passive smartphone
sensing for building context-aware and automated mobile
food diaries.

This paper is organized as follows. Section II, describes the
background and discusses related work. In Section III, the
study design, data collection procedure, and feature extrac-
tion techniques are provided. Section IV, presents a descrip-
tive analysis and a statistical analysis of the dataset. The
inference task is defined and evaluated in Section V. A num-
ber of important issues are discussed in Section VI. Finally,
the paper is concluded in Section VII.

II. BACKGROUND AND RELATED WORK
A. NUTRITION SCIENCE PERSPECTIVE
1) EATING AS A HOLISTIC EVENT
Guided by how and why people eat, Bisogni et al. [27]
provided a contextual framework for eating and drinking
events, describing them as holistic events with eight inter-
connected dimensions. The dimensions are food and drink
(type, amount, source, how consumed), time (chronolog-
ical, relative experienced), location (general/specific, food
access, weather/temperature), activities (nature, salience,
active or sedentary), social setting (people present, social
processes), mental processes (goals, emotions), physical con-
dition (nourishment, other status), and recurrence (common-
ness, frequency, what recurs). The primary idea behind this
framework is that situational and behavioral factors guide
eating. Further, Jastran et al. [28] showed that eating routines
are embedded in the schedules around daily lives related to
family, work, and recreation. They also said that repetitive
patterns could be found in eating episodes among participants
regarding the type of food and the situational context in which
food was consumed. Similar ideas were proposed in other
studies that also showed that social context, activity levels and
types, psychological aspects, location, food availability, and
several other situational and behavioral factors could affect
the eating behavior [29], [30].Ma et al. [31] found that people
in small towns and rural areas tend to travel sizable distances
for lunch. In larger towns, people consume lunch at places
closer to their workplace (e.g., canteen, close by restaurants,
fast-food outlets) because of the limited time available for eat-
ing. This shows how eating behavior is related to dimensions
such as recurrence, location, and time. Further, some stud-
ies examined links between app usage and eating behavior.

For example, Turner et al. [32] showed that excessive Insta-
gram usage could be indicative of Orthorexia Nervosa, a con-
dition of having an obsession with maintaining a healthy
eating behavior, including a focus on healthy eating, food
anxiety, and dietary restrictions.

Even though not conclusive, such studies point towards
modern mobile social media playing a role in shaping eating
behavior. Hence, all these nutrition and behavioral sciences
studies demonstrate how different behaviors and situational
factors could affect eating behavior. In addition, they also
show the repetitive nature of different dimensions around eat-
ing events, which could be helpful in terms ofmodeling eating
behavior using smartphone sensing and machine learning.
Moreover, even though there is no concrete definition regard-
ing eating events or episodes [23], going with the terminology
regarding holistic eating behavior, throughout this paper, the
term eating episode is used as the actual time period of food
intake. Moreover, the time period around the food intake
that also contains behaviors and contexts around the eating
episode (e.g., going to the place of eating and coming back,
using particular mobile apps before/after/while eating, etc.),
that help us to consider eating as a holistic event is termed
as eating event. Hence, an eating event is the eating episode,
and behavior and context before and after the eating episode
captured with a time window. This definition is in line with
prior work in mobile sensing that looked into characterizing
eating and drinking events [9], [20], [21], [33]. More details
regarding how these terms are operationalized can be found
in Section III-C.

2) SITUATIONAL CONTEXT AND BEHAVIOR AS PROXIES TO
EATING EVENTS
Mobile sensing studies collect passive sensing and self-report
data that can be broadly categorized into three pillars [24]:
person, behavior, and context. What this means is that each
sensing modality will be taken as a proxy to a trait that
is related to a person (i.e., mood, stress, sociability, age,
sex, etc.), behavior (i.e., activities, routines, etc.), or con-
text (i.e., location, social context, environmental context,
date and time, etc.). Prior work in smartphone sensing has
shown that passive sensing features can be used to infer
psychological aspects such as mood and stress (person)
[34], [35], activity levels and types (behavior) [7], [36],
sociability and social context (person, context) [37]. In the
context of eating behavior, these pillars of data can bemapped
to the eight dimensions proposed by Bisogni et al. [27].
Gatica-Perez et al. [38] showed that mobile sensing features
and self-reports could be represented using Bisogni’s frame-
work to understand eating routines meaningfully. In essence,
this means that smartphone sensing features have shown to be
promising in inferring attributes that have shown to be part
of the eight dimensions related to eating events. Such rela-
tionships have been used in prior ubiquitous computing (ubi-
comp) studies regarding the eating and drinking behavior [1],
[9], [20], [33], [38]–[40]. Leveraging these relationships, this
study seeks to examine whether smartphone sensing could
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be used to directly infer eating events by taking situational
context and behavior sensed via smartphones as proxies for
eating events. This study objective is summarized in Figure 1.
Hence, we hypothesize that date and time, application usage,
screen usage, activity level, and movements are indicative of
eating and non-eating.

B. MOBILE FOOD DIARIES
Food diaries are essential to understanding individual and
population-level eating practices [4]. While manual food
logging using pencil-and-paper based techniques could be
useful for self-reflection, mobile food diaries allow logging
fine-grained details (weight and size of dishes, variety of
dishes) about eating episodes more systematically by search-
ing food types, varieties, and sizes in a database and log-
ging them [4]. Some recent mobile food diaries have also
looked into easing the process of logging using speech and
photos [41]. Going a step further, some studies looked into
estimating the calorie intake [42] and also calorie deficit
by combining information from food diaries and passively
detected physical activities [43]. Some popular mHealth apps
that provide food journaling functionalities include Sam-
sung Health, Lose It!, MyFitnessPal, EasyDietDiary, and
SparkPeople [4], [9]. However, while food diaries provide
many benefits, they also come with a plethora of drawbacks
such as tediousness in using and finding the correct food type,
difficulty in recording correct dish size, and losing interest
in logging over time, among which one of the most com-
mon drawbacks is users forgetting to report eating episodes
[4], [20]. Hence, to overcome this barrier, researchers have
come up with automated eating detection systems using dif-
ferent mobile sensing modalities [10], [14], [15], [20], [25].
In a nutshell, these systems would detect eating episodes
and provide interventions, automatically keep track of events,
or remind users to report details about the eating episode on
a mobile food diary. The goal of this study, too, is similar.
However, the main difference is that this study only use
smartphones to make the inference, while previous studies
used wearables.

C. MOBILE SENSING FOR EATING BEHAVIOR
MONITORING
Mobile sensing studies for eating behavior monitoring could
be segregated into two main categories [24]: (1) detecting
eating events (i.e., time of eating); and (2) character-
izing eating events by identifying behavioral and situa-
tional context-related routines around eating episodes. Many
prior studies using wearable sensing modalities to detect
eating episodes fall under the first category. For exam-
ple, Chun et al. [14] used a necklace-based wearable to
detect jawbone and head movements in determining eat-
ing episodes. Their technique showed a precision of 95.2%
and a recall of 81.9% in controlled studies, and preci-
sion of 78.2%, and a recall of 72.5% in a free-living
study. Bedri et al. [3] studied an ear-worn wearable sys-
tem called EarBit to detect chewing moments, with 90.1%

and 93% accuracies in lab settings and outside-lab-settings,
respectively. Further, they showed that they could recognize
eating episodes ranging from 2-minute snacks to 30-minute
meals. Morshed et al. [25] used a wristwatch-based eating
detection system, obtaining an accuracy of 96.5% in detect-
ing eating episodes. They also showed how detecting eating
episodes using a wearable could trigger momentary ecolog-
ical assessments (EMA) in the smartphone to capture addi-
tional contextual and behavioral information about the eating
episode. Thomaz et al. [10] also showed that it is possible to
detect eating episodes using smartwatch-based inertial sen-
sors with F1 scores of 71.3% and 76.1% in two experiments
done in free-living conditions. Moreover, Rahman et al. [2]
used a combination of wrist-worn wearables and audio from
a mic to predict about-to-eat moments with a recall of 77%.
Further, they showed that personalization could increase the
recall up to 81%.

Table 1 summarizes the differences between other mobile
sensing studies and this study. On a fundamental level, while
all other studies primarily used wearables, this study uses
commodity smartphones. Further, while many prior stud-
ies focused on using sensor data streams from one or two
wearable sensing modalities, rich and multimodal sensor
data streams coming from smartphones are focused on here.
In addition, while most studies attempt to detect eating
episodes by sensing actions such as hand movement, chew-
ing, bites, mastication, etc. (hence using them as proxies
for eating), we seek to understand eating and non-eating
events with behavioral and contextual features captured via
smartphone sensors and leverage them to detect eating events.

D. SMARTPHONE SENSING FOR EATING BEHAVIOR
MONITORING
Smartphone sensing has not been often used to monitor
eating behavior. Even the available studies focused on only
characterizing eating events. Madan et al. [48] conducted a
study to understand the eating behavior of university stu-
dents in the United States. They concluded that healthy eat-
ing behaviors of individuals are related to the health and
well-being of others with whom they associate. In another
study, Seto et al. [49] concluded that behavior and context
could affect eating patterns. However, these studies did not
attempt an inference task using smartphone sensing data.
Biel et al. [20] used smartphone-based contextual sensing
to characterize eating events by detecting meal vs. snack
events using a time window of two hours around eating
episodes to aggregate sensor data. They deployed a mobile
application among 122 swiss university students, collect-
ing over 4440 eating episodes. They performed an eating
occasion type inference (meal vs. snack) with an accu-
racy of 84% with features such as time of the day, time
since the last food intake, location, and other sensor data.
Meegahapola et al. [9] showed that self-reported food con-
sumption levels (eating as usual, overeating, undereating)
could be inferred with an accuracy of 83.49% in a three-class
inference task using only smartphone sensing features with
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FIGURE 1. Objective of the study.

TABLE 1. Summary of eating detection approaches in mobile sensing. LB: Lab-based and IW: In-the-wild experiment.

a one hour time window around eating episodes. In another
study, Meegahapola et al. [21] showed that the social context
of eating events could be inferred with accuracies above
77% for student populations in two countries. However, all
these efforts are towards characterizing eating events, and not
detecting them.

The uniqueness of the above studies is that, similar to
Bisogni et al. [27], they consider eating episodes as holistic
events that happen amidst different behavioral and situa-
tional circumstances, in addition to the main action of eating.

Further, they have performed inferences assuming that eating
episodes can be detected, including the hour of eating as
a feature in inference models. Therefore, the inference can
only be made once the eating events are detected. These
studies build upon the premise that wearables can detect,
and smartphones can characterize eating events. In this study,
we consider eating as a holistic event and attempt an eating
event detection task that has not been attempted in prior work.
Further, since prior work has shown that smartphones fare
reasonably well in characterizing eating events, this study
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complements themwell in showing the potential of using only
smartphones for detecting eating events.

Finally, as shown in Figure 1, the methodology was rigor-
ously evaluated using different sensor features, feature selec-
tion techniques, model types, and personalization techniques.

III. DATA, SMARTPHONE FEATURES, AND DEFINITION
OF EATING/NON-EATING EPISODES
A. DATASET
We used a dataset regarding the eating behavior of young
adults from our previous work [9]. This dataset consists of
self-reports and smartphone sensing data regarding eating
and non-eating events from college students (mean age 23.4,
44% men) in Mexico. A mobile app called i-Log [50] was
used to collect data from participants. An entry questionnaire
was given to participants to collect demographic information.
During the deployment, time diaries captured details regard-
ing food intake similar to a mobile food diary and end-of-the-
day surveys that captured additional details regarding activity,
sleep, andmood. The users were sent notifications three times
a day to fill out a food intake questionnaire which asked about
the number of eating episodes they had within the last four
hours. Then the users were asked to provide data regarding
the last food intake which includes how long ago the eating
episode had occurred, food categories (meat, fish, bread etc.),
social context of eating (alone, with a date, with a group
of friends etc.), semantic eating location (home, university,
restaurant etc.), concurrent activities (reading, socializing,
watching TV etc.), mood and stress level at the time of eating
(5-point scale) [9].

Experiments were carried out in two phases. The first phase
was from September to October 2019, with the participation
of 29 young adults. The second phase was from November
to December 2019, where 55 additional young adults took
part. Participant inclusion criteria meant that they owned an
Android smartphone and did not have eating disorders like
bulimia or anorexia. After data cleaning and pre-processing,
the final dataset used for this study consists of 12016 self-
reports from 58 participants, out of which 1837 are eating
events, and 10179 are non-eating events, for an average of
207 total events (eating or non-eating) per participant.

B. COLLECTING GROUND TRUTH AND PASSIVE
SENSING DATA
The mobile app was designed to capture retrospective self-
reports. Capturing retrospective reports is important because
in-situ self-reports might alter the normal behavior of par-
ticipants during eating episodes, which would add noise
to sensed data. In addition, dietary recall techniques are
common in eating behavior studies (e.g. 24H dietary recall
[55], [56]). Hence, during three timeslots of the day that are
a minimum of four hours apart, the mobile application sent
a reminder to participants to report a food intake (note that a
far lesser four-hour window was used in this study to capture

FIGURE 2. Time window for sensor data aggregation.

eating reports compared to a typical 24H recall). The ground
truth responses were:

(a) Case 1: no food intake within the last four hours.
(b) Case 2: one food intake within the last four hours.
(c) Case 3: two or more food intakes within the last 4 hours.
In Case 2 and Case 3, they were asked to report how long

ago the last food intake occurred, and the possible answers
included 0-30 min, 31-60 min, 60-90 min, 90-120 min,
120-150 min, 150-180 min, 180-210 min, and 210-240 min
ago. This report helps to determine an approximate eating
time (Tanc) as an anchor for the last eating episode. For
example, if a self-report was done at 8.00 pm, and if the
eating episode occurred 31-60 minutes ago, the approximate
eating time was about 45 minutes ago (mean of 31 and 60),
hence Tanc = 7.15 pm. Further, in Case 2, except for the
time window corresponding to that eating episode, the rest
of the times correspond to non-eating. Hence, a maximum of
two non-eating events from such self-reports were randomly
sampled. Furthermore, in Case 1, the last four hours would
correspond to a non-eating period, and a maximum of three
time windows were randomly sampled from the last four
hours asTanc for non-eating events. Moreover, it is worth not-
ing that all eating and non-eating events were chosen such that
they are non-overlapping when sensor data are aggregated
with a time window (described in the next sub section), hence
avoiding any biases in the evaluation.While self-reports were
captured only three times per day, passive smartphone sensing
data were captured throughout the 24 hours. The sensing
modalities include the accelerometer (ACC), location (LOC),
battery (BAT), screen (SCR), and application usage (APP).
A summary of passive smartphone sensing features used in
the study is given in Table 2.

C. WHAT IS AN EATING EVENT?
A 2X time window around Tanc was used to aggregate sensor
data to match a self-report as given in Table 2. According to
Figure 2, 2X time window means that the inference can be
done X minutes after the Tanc. Using a larger time window
like one hour (X = 30 minutes) is common for ubicomp
studies regarding eating and drinking behavior that considers
the context and behavior of participants in addition to the
actual eating/drinking episode [9], [20], [33], [40]. This does
not mean that the time of inference should be 30 minutes
after the end of eating. In reality, it could be much lesser than
that because eating episodes can span around 20-30 minutes.
Moreover, even though most of the analysis in the next sec-
tions focuses on a one-hour time window, the time window
can be changed depending on the dataset and application
requirements. In Section VI this is further discussed.

With the said time window, for the previous example
where Tanc = 7.15pm, sensor data would be aggregated from
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TABLE 2. Summary of 40 features extracted from smartphone sensors.

6.45pm (Tanc-30) to 7.45pm (Tanc+30). In case participants
reported that they did not have food during the last four hours,
and if the self-report time is Tsr , Tanc was chosen carefully
to make sure that a half-an-hour window was present on
either side of the Tanc, within the non-eating time window
(Tsr -30 >= Tanc and Tanc >= Tsr -210). This is to ensure
that there are sufficient sensor data (one-hour) in a non-eating
time window to match the self-report. Again, it is worth
noting that all the eating and non-eating events in the dataset
contain non-overlapping sensor data. Hence, each event is
mutually exclusive, and there is no data leakage. Moreover,
there is no clear definition for the terms ‘eating event’ or ‘eat-
ing episode’ as these terms have been used interchangeably
in different studies [23]. Therefore, for clarity, throughout
this study, the one-hour time window reported by the par-
ticipant as they had food during that time is referred as an
eating event. This event consists of the actual eating episode
(i.e., the time period of actual eating) and of an extended
time period that aims to capture the surrounding behavior
and context around the eating episode, similar to prior work
[9], [20], [21], [33], [40]. Finally, a one-hour time window in
which food is not consumed by participants is referred as a
non-eating event.

IV. DESCRIPTIVE AND STATISTICAL ANALYSIS OF
SENSOR DATA AND EATING EVENTS (RQ1)
A. ACCELEROMETER FEATURES
Figure 3 shows accelerometer data distributions for all users
and two randomly selected users. In Figure 3a, accelerome-
ter data distributions for eating and non-eating events look

FIGURE 3. Violin plots of six selected accelerometer features for all the
users and for two randomly selected users.

similar when all the users are considered in general, with
minimal differences between means in all six features. How-
ever, for individual users in Figure 3b and Figure 3c, there are
visible differences in accelerometer data distributions. Hence,
even though the all-user distribution looks the same for eating
and non-eating events, individual-level differences could be
leveraged when building inference models by considering
within-user differences during eating and non-eating events.

B. LOCATION FEATURE
Figure 4a shows a distribution of eating and non-eating
events for different values of radius of gyration for all users.
Although, according to the figure, the ratio of eating to
non-eating is almost the same for all radius of gyration values
other than between 3-4, a relative increase in eating events can
be seen. This suggests that a significant amount of movement
during an hour corresponding to eating events. This finding
is coherent with prior work that said people might travel a
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FIGURE 4. Distribution of eating and non-eating events for different
radius of gyration values for all the users and for two randomly selected
users.

FIGURE 5. Distribution of app usage for eating and non-eating events for
all users and for two randomly selected users.

sizable distance at noon in search of food, regardless of the
geographical location [31], [57]. However, when distributions
of two randomly selected users are considered (Figure 4b
and Figure 4c), even though the distribution of user B is
almost the same as all-users distribution in Figure 4a, user
A has a different distribution. That user has eating events
only from 0 to 2 radius of gyration values, suggesting that
while moving user A has not eaten. Therefore, these diagrams
capture the behavioral diversity of people in terms of move-
ment during a one-hour window and how such movements
correspond to eating and non-eating.

C. APPLICATION USAGE FEATURES
Figure 5a provides the app usage distribution for eating and
non-eating events for all the users. Results suggest that the
proportion of app usage for a particular app could differ
between eating and non-eating. For example, more people
used Spotify than Youtube during eating events, whereas
there was more Youtube usage compared to Spotify dur-
ing non-eating periods. While these population-level statis-
tics look interesting, individual-level app distributions for
two random users in Figure 5b and Figure 5c suggest that
individual-level app usage could alter from the population
level. For example, user A has not used Instagram and
Chrome while eating. They have used Youtube more than
Facebook while eating whereas used Facebook more than
Youtube when not eating. User B has also used Chrome only
while not eating. These individual app usage differences are
in line with prior work in mobile sensing that has shown

that app usage behavior could be used to identify users [58].
Furthermore, app usage behavior has shown good per-
formance for other eating and drinking behavior-related
tasks [1]. In addition, prior work has proposed that app usage
can be used to gain an understanding of user context [59].
Hence, when combined with findings in prior work, the
descriptive results indicate why person-level models could
be useful over population-level models to capture these
fine-grained behavioral differences among people, especially
when considering app usage behavior.

In summary, descriptive analysis of the dataset shows that
features from passive sensingmodalities could indicate eating
and non-eating events, especially when combined with the
time of the day. Further, results for some modalities such as
APP, LOC, and ACC suggest that only considering data from
a single user could capture individual-level behavioral differ-
ences with regard to eating and non-eating events, that would
otherwise be not noticeable when considering population-
level behaviors. In the next section, these feature-level rela-
tionships are examined and quantified in more detail using
various statistical techniques.

D. STATISTICAL SIGNIFICANCE OF FEATURES
Table 3 shows the top ten features that help discriminate
eating and non-eating, when sorted in the descending order
according to the t-statistic [60]. In addition, the p-values [61]
are also given. Further, since prior work has highlighted the
lack of informativeness in p-values [62], we also provide
Cohen’s-d (effect size) [63] with 95% confidence interval
(CI) [64] to quantify the statistical significance of features.
The rule of thumb for interpreting Cohen’s-d values is as
follows: 0.2= small effect size, 0.5=medium effect size, and
0.8 = large effect size. In addition, if the confidence interval
does not overlap with zero, the difference between the two
groups could be considered significant [62]. Hence, for the
two-class problem of detecting eating and non-eating, this
analysis aims to examine features that help discern between
the two classes.

The top feature by t-statistics is acc_y. Mean values for
eating (1.04) and non-eating (0.92) for acc_y, show that
the mobile phone activity around the y-axis is higher when
eating than during non-eating events. This observation is
moderately supported by the t-statistic (5.02) and effect size
(0.12) values. Moreover, similar behavior can be observed in
the next top five features, all of which had t-statistics above
three. However, all of them had below small effect sizes. The
WhatsApp app usage and the feature that captures whether
the day is a weekend or not too had t-statistic values above
two. Furthermore, all features included in Table 3 had 95%
confidence intervals not overlapping zero. These results sug-
gest that smartphone sensing features from modalities such
as ACC, TIME, and APP could be useful to discern between
eating and non-eating events, albeit with limited statistical
significance when considering the full participant cohort.
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TABLE 3. t-statistic, p-value (p-value ≤10−4:****; p-value ≤10−3:***; p-value ≤10−2:**), and Cohen’s-d with 95% confidence interval calculated using
12016 datapoints. Top 10 features are shown in the decreasing order of t-statistic.

FIGURE 6. Three phases of the study.

V. DETECTING EATING EVENTS AND IMPORTANT
FEATURES (RQ2)
A. TWO-CLASS EATING EVENT INFERENCE
In this section, we used different feature group combi-
nations to infer eating vs. non-eating events using smart-
phone sensing data. Scikitlearn framework [65] and python
is used to conduct experiments in three phases using differ-
ent model types: (1) Random Forest (RF) [66], (2) Naive
Bayes (NB) [67], (3) Gradient Boosting (GB) [68], and
(4) AdaBoost (AB) [69]. These models were chosen by
considering the tabular nature of the dataset, interpretabil-
ity of results (e.g., getting feature importance values), and
the small size of the dataset. Further, similar to recent ubi-
comp work [70], Synthetic Minority Over-sampling Tech-
nique (SMOTE) [71] was used to prepare training sets for
each inference task. In addition, F1-Score and AUROC score,
both with macro averaging is reported. This would give equal
emphasize to both classes, hence indicating whether both
eating and non-eating classes are classified well. Moreover,
the three phases of experiments are described below (named
as subject dependent, subject independent, and hybrid in line
with prior work [26]) and summarized in Figure 6.

1) SUBJECT INDEPENDENT (BASE)
These models are also called population-level models. The
leave-one-out cross-validation strategy that is commonly
used in mobile sensing research [9], [35] is used in this phase.
The objective is to train on a set of users and test on a user
not seen on the training set. Hence, this is the base accuracy
because, from a mobile sensing standpoint, this corresponds
to a situation where a new user is starting to use a mHealth
app, and the server does not have any data from the user.
Therefore, the machine learning model used on the user’s app

is a general model trained with data from other users. This is
the accuracy that can be expected for a new user without any
personalization.

2) HYBRID (PERS1)
This corresponds to a situationwhere the server has some data
from a new user to include in training a partially personalized
model. However, the server does not have enough data from
that user to train a separate, fully personalized model. From
a mobile sensing standpoint, this corresponds to a situation
where users have used a mHealth app for some time, hence
generating some data for model training. Then, users use the
mHealth app that contains the partially personalized model.
The generated model is partially personalized because user
data has been used in training the model, and the same user’s
data would be used in testing. When conducting experiments,
it was ensured that each training split contained data from
other subjects (similar to leave-one-out cross-validation) and
70% data from the target user, and the rest of the data points
of that user were used to test the model.

3) SUBJECT DEPENDENT (PERS2)
These models are also called user-level models. The server
has enough data to train entirely personal models for each
user. Hence, testing is done with a model that is trained with
the same user’s data. This corresponds to a fully personalized
scenario from a mobile sensing standpoint [35] where users
have used a mHealth app for some time and have produced
enough data for the server to generate a fully personalized
model. In this case, different users would have different mod-
els. Hence the approach was evaluated by training the model
using 70% data from each user and testing with the rest of
the data of that user, and finally averaging the results of all
the users. These models are also called user-level models.

We conducted all three experiments using several feature
group combinations. The first task was to understand whether
single feature modalities could be used for the inference task.
This is important because prior work has shown that having
multiple models that can make the same inference could
be useful for robust mobile sensing systems in situations
of sensor failure [1]. For instance, a college student might
turn off the location sensor during some hours because that
sensor could drain the battery faster. In such situations, having
different inference models that use other data sources to
make the exact inference is crucial. In addition, the feature
group TIME would indicate whether time alone could be a
good predictor for eating and non-eating events. Hence, the
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TABLE 4. Averaged F1-score (F1) and AUROC of 58 users, calculated using
four different models, for the BASE of eating event detection task. For
ALL-PCA, the number in square brackets (e.g. [12], [10], etc.) indicate the
number of principal components used for the inference. For ALL-FS,
the notation in square brackets (e.g. [F3], [F7], etc.) indicate the name of
the feature group. More details about feature groups, including the list of
features in each group are given in Table 7

TABLE 5. Averaged F1-score (F1) and AUROC calculated using random
forest classifiers, for BASE, PERS1, and PERS2 of the eating event
detection task of 58 users. For ALL-FS, the notation in square brackets
(i.e. [F1]) indicate the name of the feature group. More details about the
feature group, including the list of features in the group is given in Table 7.

experiments were conducted for feature groups LOC, SCR,
TIME, BAT, APP, and ACC separately.

There are three more feature groups where all features are
used. First, the ALL feature group considers all the features
available for the inference task. Then ALL-PCA used princi-
pal component analysis [72] to obtain the optimum number
of principal components to get the best accuracy using all
features. Then, ALL-FS used a sequential forward feature
selection algorithm [73] to select the best set of features for
a given inference task. For BASE and PERS1, feature group
after feature selection is common for all users because there
is only one model for all users. However, since there is one
model for each user in PERS2, different feature groups are
used to train models after feature selection.

Table ?? and Table ?? summarize the results of experi-
ments. First, in Table ??, BASE results are shown for all
inference models. As per the results, the best-performing
models are different for different feature groups. The highest
F1-score of 0.74 and AUROC of 0.65 for the BASE came
from the RF when using the ALL feature group. These
results suggest that BASE scores for the inference tasks are
moderate. Then, personalized results (PERS1 and PERS2)
are included in Table ??. Considering space limitations, this
table only contains results from RF because they provided
the best performance for PERS1 and PERS2 in most cases.
There is a bump in AUROC scores for PERS1 compared to

TABLE 6. Personalized eating event detection accuracy breakdown for
random five users in PERS2 with ALL-FS. F1-score (F1) and AUROC are
shown. Top performing feature group, and modalities included in the
feature group are shown with X. F1-score Bump indicates the F1-score of
BASE (Blue), increase in F1-score from BASE to PERS1 (Green), from
PERS1 to PERS2 (Orange) for each user.

BASE in most cases. In addition, for ALL, ALL-PCA and
ALL-FS, F1 scores increased by over 6%. ALL-FS with F1
feature set provided the best F1 score of 0.81. Finally, the
best F1 score out of all inference tasks (0.85) came from
PERS2 with the ALL-FS feature group. Similar patterns
could be seen with AUROC scores. Since PERS2 averages
results from 58 different users, the model for each user had
different feature sets after feature selection that provided the
best performance. Section V-B discusses more details about
these feature sets. This suggests that while subject-dependent
models could help detect eating events with reasonably high
performance, depending on the user, it is better to select
the best set of features using a feature selection technique.
In addition, hybrid models perform fairly well compared to
subject-dependent models for most feature groups.

B. FEATURE IMPORTANCE FOR EATING EVENT DETECTION
(RQ2)
In order to study individual differences further, Figure 7 gives
BASE feature importance values (Figure 7a) and PERS2
feature importance values for three randomly selected users
(Figure 7b, Figure 7c, and Figure 7d) based on Gini impor-
tance of RF classifiers. These figures illustrate how datasets
from different users have varying features that could discern
between eating and non-eating. For example, BASE (0.081,
0.055) and user A (0.076, 0.048) had high values for time
of the day (minutes_elapsed, hours_elapsed). However, for
user C (0.027, 0.019) the value for those features are low.
Moreover, BASE (0.059) and user B (0.053) had high values
for battery_level, whereas for user A (0.037) and user C
(0.031), had lower values compared to other features. Another
feature that had a clear difference was radius_of_gyration.
It was high for BASE (0.058), user A (0.062), user B (0.049)
and low for user C (0.031). On a feature group level, the
ACC feature group had very similar values across all fea-
tures [0.035,0.040] in BASE, whereas user A and user C
had highly varied feature values, where some ACC feature
values are comparatively higher than other features values.
These findings point toward why PERS2 models provided
significantly higher accuracy than the BASE. This is because
PERS2 capture user-specific behaviors regarding eating and
non-eating events.
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FIGURE 7. Feature importance values from RFs for (a) BASE and (b)–(d) PERS2 models from three randomly selected users.

C. EFFECT OF PERSONALIZATION ON INDIVIDUALS
Table 6 shows PERS2 results breakdown for five random
users. The maximum F1 score attained by a user here with
PERS2 was 0.98. In addition, for five users here and, in fact,
for all 58 users for whom PERS2 models were trained,
after feature selection, no two users shared the same feature
group that resulted in the highest accuracy. For example,
user 3 used features from all feature groups in the model to
attain an F1 score of 0.88, whereas user 4 used a selected
set of features from only APP and SCR to attain an F1
score of 0.81. In addition, F1-score bump representation
shows that the PERS2 score of different users increased by
different amounts compared to BASE and PERS1 results
for individual users. For example, for user 5, BASE to
PERS2 increase was 24% whereas for user 1, the increase
was 2.6%. This shows how the effect of personalization
could vary from user to user depending on the chosen fea-
tures. It is also worth noting that for no user, both F1-score
and AUROC decreased when going from BASE to PERS1
to PERS2.

VI. DISCUSSION AND LIMITATIONS
We now discuss implications as well as limitations of our
work.

A. TIME WINDOW FOR EATING EVENT DETECTION
It is worth noting how a chosen time window affects the
inference task. Similar to other inferences of human activ-
ities in ubicomp research [9], [20], [33], [34], [40], eating
event inference is carried out with a time-window based
approach, with fixed or variable frequencies, depending on
the application. For example, typical activity recognition
algorithms that use time windows of 3-10 seconds could run
once every second with overlapping sensor data segments,

or run every thirty seconds to generate sparser inferences.
In ubicomp work, Bae et al. [33] used thirty-minute, one-
hour, and two-hour time windows for drinking event detec-
tion. Meegahapola et al. [9] used a one-hour time window
to detect subjective food consumption level inferences. This
research is in line with Bisogni’s contextual framework [27],
which not only considers eating/drinking events but the whole
context around them. Similarly, the models discussed in this
paper could also be run with different time intervals, depend-
ing on the use case. For example, with a one-hour time win-
dow, if the inference task was performed for Tanc = 2.15pm
at 2.45pm, and run again for Tanc = 2.17pm at 2.47pm,
the granularity would be higher, compared to running the
second inference after another hour for Tanc = 3.15pm at
3.35pm. In addition, as shown in the previous section, this
inference could be run for shorter time windows, obtaining
reasonable inference accuracies. Even though the one-hour
time window performed better for this dataset, shorter time
windows might perform better for other datasets. Coming
back to the previous example, with a shorter twenty-minute
time window, for Tanc = 2.15 pm, the inference could be
done at 2.25 pm, hence reducing the time between Tanc
and inference time. Hence, the time window and inference
frequency should be chosen depending on the use case and the
available data. Future work could explore how these aspects
affect inference performance in more depth. Furthermore,
we produced results for different time windows ranging from
ten to ninety minutes (not included here due to space limi-
tations). The best average results were obtained for the sixty
minute case, closely followed by fifty minutes and seventy
minutes. Hence, only the results for the sixty minute case
were included throughout the paper. However, as mentioned
earlier, different time windows could be used in future work
depending on the dataset and features.
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B. EFFECT OF AUTOMATIC INFERENCES ON BATTERY LIFE
Many prior automatic dietary monitoring inference systems
have used wearable devices, which required the device to
run inference models continuously at fixed or variable inter-
vals [23]. This could have a significant impact on battery
life of wearables. In addition, wearable devices rarely work
alone as standalone devices. Typical wearables connect to
smartphones, and smartphone apps are used to provide feed-
back and interventions to people. In the case of reminding
users to fill in self-reports, users typically need to fill in food
diaries on the phone as it is challenging to use a food diary on
a wearable device. Hence, maintaining this connection with
the smartphone could also affect the battery life of both the
phone and the wearable. Eating event detection on the phone
would reduce most of these issues. In the results section,
we showed that models performed well for ALL, interaction
sensing modalities (INTSEN - SCR, APP), and continuous
sensing modalities (CONSEN - LOC, BAT, ACC) for both
PERS1 and PERS2. While CONSEN would consume far
more battery life as it uses accelerometer and location-related
features, INTSEN only uses app usage and screen usage,
which are just phone usage logs. This makes INTSEN infer-
ences computationally cheaper than those using CONSEN or
ALL. However, the set of features available in the dataset
for APP and SCR are not rich, and future data collection
efforts could look into collecting richer datasets that could
further increase performance. Overall, INTSEN could be
a low-cost alternative to phone-based eating event track-
ing, compared to CONSEN and wearable-based tracking.
In this sense, INTSEN could be used as a low-power sensing
modality to trigger more accurate, high-power CONSEN or
ALL-FS models, as discussed in [23].

C. INTERPRETATION OF EATING EVENT DETECTION
There are many ways in which an eating event can be inter-
preted. In this paper, an hour period that contains an eating
episode is considered as an eating event. This was done with
the assumption that there is a time period in which partici-
pants prepare for eating (going to the place of eating, prepar-
ing food, etc.) and move on to other activities after the eating
event. Hence, the objective was to capture all such behaviors
using sensing modalities. This is in line with the idea of
capturing holistic food consumption events similar to prior
work in smartphone sensing [9], [20], [27], [33], [40], [40].
However, some previous studies only investigated detecting
eating gestures from hands, neck, chews, or mastication, and
thus in many such cases, eating episodes are detected by
sensing different phenomena (e.g., hand motion in wrist-
based sensing, chewing in earable-based sensing, or jaw bone
movement in necklace-based sensing). In addition, some
studies have modeled eating event detection as a time-series
data analysis problem. In contrast, the approach discussed in
our paper did not consider the time-series nature of the data,
and we extracted eating and non-eating events using short-
term retrospective self-reports to model inferences using a
tabular dataset (Figure 1). Due to these differences in sensing

and modeling techniques, there is no direct comparison pos-
sible with previous work. It is worth noting that there exist
subtle differences in how eating events/episodes are defined
in different studies, and results should be interpreted with
caution by understanding the essence of each individual work.

D. ABOUT TO EAT, EATING NOW, OR JUST ATE?
Even though previous research has used terms such as eat-
ing event detection, eating moment recognition, and eating
detection, there is a fundamental difference between what
is being sensed and when it is being sensed. In addition,
depending onwhen sensing occurs, there are differences w.r.t.
how such sensing techniques can be used to benefit users. For
example, Rahman et al. [2] explicitly mentioned that they are
predicting about-to-eat moments to predict eating episodes
before they occur. Such inferences are useful for interventions
because they can motivate a user not to eat, or used to ask
users to control their eating amount before an episode occurs.
However, this method might not be used for automated food
tracking because predicted eating episodes might or might
not happen due to interventions. Furthermore, other stud-
ies attempt to detect the episode during the actual eating
action [3], [10], [14]. In such cases, it is challenging to ask
users not to eat because they are already doing it. However,
these approaches could be used for certain interventions and
automated food tracking. Additionally, assume that there is a
need for users to complete mobile food diaries. In this case,
it might be less desirable to trigger reminders at the moment
itself, as prior work has shown that people do not appreciate
it when they are disturbed during eating moments [20], [24].
On the other hand, in our approach, an eating event is detected
retrospectively, and approximately less than thirty minutes
after the end of eating. The proposed technique is less useful
for in-the-moment interventions. However, it could be used
for interventions regarding future eating events. The proposed
technique would also work for automated food tracking, as it
would allow reminding users to fill in food diary reports
within a short time after eating, hence not disturbing them
during actual eating times. This could also reduce recall bias
because it would not be too far from the actual eating episode.
Hence, as explained, depending on the time events are sensed,
the most appropriate use-cases would be different. These
aspects should be considered when building future sensing
techniques for mobile food diaries.

E. OTHER INFORMATIVE FEATURES
It is important to acknowledge that it was challenging to gen-
erate interpretable and meaningful features from the dataset.
First, it was clear from the results that ACC features were
informative of eating and non-eating events. This means that
activity levels are helpful in discerning between the two
classes. However, the only available features were statistical
features generated from the accelerometer axes, which are
hard to interpret. More easily interpretable features such as
activity level (i.e., step count) and activity type (i.e., walking,
sitting, driving, running, cycling, etc.), which can be captured
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using activity recognition engines in modern smartphones,
were not available in the dataset. Future work should look
into capturing such interpretable features, which can be gen-
erated with low-power consumption on a smartphone. It was
also impossible to determine app usage times for features in
the APP group because such features were not available in
the dataset. This is another aspect that could be improved
when creating mobile sensing applications for future studies.
Another challenge in the data filtering and processing phase
was missing data, especially from the location sensor. As the
location sensor consumes a high amount of power, there is
a tendency for participants to turn off this sensor. Finally,
researchers could examine other modalities such as touch and
typing events, notification clicking behaviors, and continuous
sensing modalities such as ambient light sensors, which are
typically available in modern smartphones and have shown
promise in other smartphone sensing based behavioral mod-
eling tasks [24].

F. IMPORTANCE OF DIVERSITY-AWARENESS
Depending on demographic attributes, lifestyle, and culture,
eating behaviors can significantly vary [31], [74]. Early work
documented differences between men and women related
to eating behavior [74]. Other statistics show country-based
differences. For instance, people in European countries like
France, Italy, and Spain spend more time a day on average
eating and drinking than people in the United States [75]. Our
work has studied the eating behavior of a group of college
students in Mexico. The results can not be assumed to repre-
sent the eating behavior of other age groups from the same
country or people from other countries. Prior work has high-
lighted the importance of considering diversity-awareness
in social platforms that use mobile sensing and machine
learning [76], [77]. Hence, future work needs to be carried
out for different age groups and countries.

G. ADDITIONAL ASSUMPTIONS AND IMPLICATIONS
In the first place, our work assumes that human behavior
does not change significantly over time with respect to app
usage, screen usage, and activities. However, this is not
always the case as the lifestyle and behavior of people could
indeed change over a period of time. Future work could
look into using time windows (e.g. one month, two months,
etc.) when selecting data for training models. Unfortunately,
the dataset used in our work did not allow to capture such
behavioral changes because the data collection involved only
a few weeks. Examining such temporal behavioral change
was not a goal of this study and is out of the scope of our
paper.

In the second place, we assumed that there is no relation
between eating and non-eating events of the same person,
even within the same day. However, this might not be the
case because eating and not eating are temporally linked,
e.g., long periods of not eating could increase the possibility
of eating. On the flip side, eating a meal right now would
increase the possibility of non-eating in the next few hours.
With the studied dataset, it was not possible to test such
phenomena because only three self-reports were collected per
day. Therefore, all eating and non-eating events might not be
present. This topic is open for future investigation.

In the third place, another limitation is that eating events
could be under-reported for convenience or other reasons
(i.e., a person reporting non-eating in a case when an eating
event indeed occurred). Even though this might add some
noise to the dataset, prior work also suggests that it is dif-
ficult to capture and verify all self-reports during real-life
experiments [1], [20], [34], [35].

As a fourth issue, general machine learning models
with feature level fusion were used in our work, simi-
lar to many prior smartphone sensing in-the-wild deploy-
ments [1], [20], [33], [34]. Whether other decision-level

TABLE 7. Feature groups used in different inference models.
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fusion techniques could be used for this task is open for future
investigation.

Finally, regarding statistical analyses, even though we used
a reasonably larger sample size compared to other ubicomp
studies, future work in this domain could examine larger
sample sizes to examine the issues of generality and person-
alization in more depth. Note also that the Bonferroni correc-
tion [78] was not used when calculating p-values even though
there were multiple comparisons in the statistical analysis.
So, the results regarding p-values need to be interpreted with
caution.

VII. CONCLUSION
In this paper, we examined the eating behavior of 58 college
students in Mexico using self-reports and passive smartphone
sensing data. First, it was shown that time of the day, and
features frommodalities such as screen usage, accelerometer,
app usage, and location are indicative of eating and non-
eating events. Then, it was shown that eating and non-eating
events can be inferred with an AUROC of 0.65 (F1-score
of 0.75) using a subject-independent model, which can be
further improved up to AUROC of 0.81 (F1-score of 0.85 for
subject-dependent and 0.81 for hybrid models) using person-
alization techniques. Using feature importance values from
classificationmodels and sequential forward feature selection
techniques, our work showed that best-performing, subject-
dependent models for different users rely on different fea-
ture groups. These findings are encouraging towards future
mobile food diary apps that are context-aware for both user-
and population-level use cases.
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