
ProGAP: Progressive Graph Neural Networks
with Differential Privacy Guarantees

Sina Sajadmanesh and Daniel Gatica-Perez

Idiap Research Institute, EPFL
{sajadmanesh,gatica}@idiap.ch

Abstract. Graph Neural Networks (GNNs) have become a popular tool
for learning on graphs, but their widespread use raises privacy concerns as
graph data can contain personal or sensitive information. Differentially
private GNN models have been recently proposed to preserve privacy
while still allowing for effective learning over graph-structured datasets.
However, achieving an ideal balance between accuracy and privacy in
GNNs remains challenging due to the intrinsic structural connectivity
of graphs. In this paper, we propose a new differentially private GNN
called ProGAP that uses a progressive training scheme to improve such
accuracy-privacy trade-offs. Combined with the aggregation perturba-
tion technique to ensure differential privacy, ProGAP splits a GNN
into a sequence of overlapping submodels that are trained progressively,
expanding from the first submodel to the complete model. Specifically,
each submodel is trained over the privately aggregated node embeddings
learned and cached by the previous submodels, leading to an increased
expressive power compared to previous approaches while limiting the in-
curred privacy costs. We formally prove that ProGAP ensures edge-level
and node-level privacy guarantees for both training and inference stages,
and evaluate its performance on benchmark graph datasets. Experimen-
tal results demonstrate that ProGAP can achieve up to 5-10% higher
accuracy than existing state-of-the-art differentially private GNNs.

Keywords: Graph Neural Network · Differential Privacy · Progressive
Learning · Node Classification.

1 Introduction

Graph Neural Networks (GNNs) have emerged as a powerful tool for learn-
ing from graph-structured data, and their popularity has surged due to their
ability to achieve impressive performance in a wide range of applications, in-
cluding social network analysis, drug discovery, recommendation systems, and
traffic prediction [2, 5, 14, 22, 48]. GNNs excel at learning from the structural
connectivity of graphs by iteratively updating node embeddings through infor-
mation aggregation and transformation from neighboring nodes, making them
well-suited for tasks such as node classification, graph classification, and link
prediction [7, 16, 25, 46, 50, 51]. However, as with many data-driven approaches,

ar
X

iv
:2

30
4.

08
92

8v
1

 [
cs

.L
G

]
 1

8
A

pr
 2

02
3

2 S. Sajadmanesh and D. Gatica-Perez

GNNs can expose individuals to privacy risks when applied to graph data con-
taining sensitive information, such as social connections, medical records, and
financial transactions [36, 42]. Recent studies have shown that various attacks,
such as link stealing, membership inference, and node attribute inference, can
successfully break the privacy of graph datasets [18,19,34,44], posing a significant
challenge for the practical use of GNNs in privacy-sensitive applications.

To address the privacy concerns associated with GNNs, researchers have re-
cently studied differential privacy (DP), a well-established mathematical frame-
work that provides strong privacy guarantees, usually by adding random noise
to the data [9,10]. However, applying DP to GNNs is very challenging due to the
complex structural connectivity of graphs, rendering traditional private learning
methods, such as differentially private stochastic gradient descent (DP-SGD) [1],
infeasible [3,8,39]. Recently, the aggregation perturbation (AP) approach [39] has
emerged as a state-of-the-art technique for ensuring DP in GNNs. Rather than
perturbing the model gradients as done in the standard DP-SGD algorithm and
its variants, this method perturbs the aggregate information obtained from the
GNN neighborhood aggregation step. Consequently, such perturbations can ob-
fuscate the presence of a single edge, which is called edge-level privacy, or a single
node and all its adjacent edges, referred to as node-level privacy [37].

The key limitation of AP is its incompatibility with standard GNN architec-
tures due to the high privacy costs it entails [39]. This is because conventional
GNN models constantly query the aggregation functions with every update to the
model parameters, which necessitates the re-perturbation of all aggregate out-
puts at every training iteration to ensure DP, leading to a significant increase in
privacy costs. To mitigate this issue, Sajadmanesh et al. [39] proposed a method
called GAP, which decouples the aggregation steps from the model parameters.
In GAP, node features are recursively aggregated first, and then a classifier
is learned over the resulting perturbed aggregations, enabling DP to be main-
tained without incurring excessive privacy costs. Due to having non-trainable
aggregations, however, such decoupling approaches reduce the expressiveness of
the GNN [12], leading to suboptimal accuracy-privacy trade-offs.

In the face of these challenges, we present a novel differentially private GNN,
called “Progressive GNN with Aggregation Perturbation” (ProGAP). Our new
method uses the same AP technique as in GAP to ensure DP. However, instead of
decoupling the aggregation steps from the learnable modules, ProGAP adopts
a multi-stage, progressive training paradigm to surmount the formidable privacy
costs associated with AP. Specifically, ProGAP converts a K-layer GNN model
into a sequence of overlapping submodels, where the i-th submodel comprises the
first i layers of the model, followed by a lightweight supervision head layer with
softmax activation that utilizes node labels to guide the submodel’s training.
Starting with the shallowest submodel, ProGAP then proceeds progressively to
train deeper submodels, each of which is referred to as a training stage. At every
stage, the learned node embeddings from the preceding stage are aggregated,
perturbed, and then cached to save privacy budget, allowing ProGAP to learn

ProGAP: Progressive GNN with Differential Privacy 3

a new set of private node embeddings. Ultimately, the last stage’s embeddings
are used to generate final node-wise predictions.

The proposed progressive training approach overcomes the high privacy costs
of AP by allowing the perturbations to be applied only once per stage rather than
at every training iteration. ProGAP also maintains a higher level of expressive
power compared to GAP, as the aggregation steps now operate on the learned
embeddings from the preceding stages, which are more expressive than the raw
node features. Moreover, we prove that ProGAP retains all the benefits of
GAP, such as edge- and node-level privacy guarantees and zero-cost privacy
at inference time. We evaluate ProGAP on five node classification datasets,
including Facebook, Amazon, and Reddit, and demonstrate that it can achieve
up to 10.4% and 5.5% higher accuracy compared to GAP under edge- and node-
level DP with an epsilon of 1 and 8, respectively.

2 Related Work

Several recent studies have investigated differential privacy (DP) to provide for-
mal privacy guarantees in various GNN learning settings. For example, Sajad-
manesh and Gatica-Perez [38] propose a locally private GNN for a distributed
learning environment, where node features and labels remain private, while
the GNN training is federated by a central server with access to graph edges.
Lin et al. [29] also introduce a locally private GNN, called Solitude, that pre-
serves edge privacy in a decentralized graph, where each node keeps its own
private connections. However, both of these approaches use local differential pri-
vacy [24], which operates under a different problem setting from our method.

Other approaches propose edge-level DP algorithms for GNNs. Wu et al. [44]
developed an edge-level private method that modifies the input graph directly
through randomized response or the Laplace mechanism, followed by train-
ing a GNN on the resulting noisy graph. In contrast, Kolluri et al. [27] pro-
pose LPGNet, which adopts a tailored neural network architecture. Instead
of directly using the graph edges, they encode graph adjacency information in
the form of low-sensitivity cluster vectors, which are then perturbed using the
Laplace mechanism to preserve edge-level privacy. Unlike our approach, however,
neither of these methods provides node-level privacy guarantees.

Olatunji et al. [33] propose the first node-level private GNN by adapting the
framework of PATE [35]. In their approach, a student GNN model is trained on
public graph data, with each node privately labeled using teacher GNN mod-
els that are trained exclusively for the corresponding query node. Nevertheless,
their approach relies on public graph data and may not be applicable in all
situations. Daigavane et al. [8] extend the standard DP-SGD algorithm and
privacy amplification by subsampling to bounded-degree graph data to achieve
node-level DP, but their method fails to provide inference privacy. Finally, Sa-
jadmanesh et al. [39] propose GAP, a private GNN learning framework that
provides both edge-level and node-level privacy guarantees using the aggrega-
tion perturbation approach. They decouple the aggregation steps from the neu-

4 S. Sajadmanesh and D. Gatica-Perez

ral network model to manage the privacy costs of their method. Although our
method leverages the same aggregation perturbation technique, we take a dif-
ferent approach to limit the privacy costs using a progressive training scheme.

The main concept behind progressive learning is to train the model on simpler
tasks first and then gradually move towards more challenging tasks. It was orig-
inally introduced to stabilize the training of deep learning models and has been
widely adopted in various computer vision applications, such as facial attribute
editing [45], image super-resolution [43], image synthesis [23], and representa-
tion learning [28]. This technique has also been extended to federated learning,
mainly to minimize the communication overhead between clients and the central
server [4,17,41]. However, the potential benefit of progressive learning in DP ap-
plications has not been explored yet. In this paper, we are first to examine the
advantages of progressive learning in the context of private GNNs.

3 Background

3.1 Differential Privacy

Differential privacy (DP) is a widely accepted framework for measuring the pri-
vacy guarantees of algorithms that operate on sensitive data. The main idea of
DP is to ensure that the output of an algorithm is not significantly affected by
the presence or absence of any particular individual’s data in the input. This
means that even if an attacker has access to all but one individual’s data, they
cannot determine whether that individual’s data was used in the computation.
The formal definition of DP is as follows [10]:

Definition 1. Given ε > 0 and δ ∈ [0, 1], a randomized algorithm A satisfies
(ε, δ)-differential privacy, if for all adjacent datasets D and D′ differing by at
most one record and for all possible subsets of A’s outputs S ⊆ Range(A):

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

To adapt the definition of DP for graphs, two different notions of adjacency
are defined: edge-level and node-level adjacency. In the former, two graphs are
adjacent if they differ only in the presence of a single edge, whereas in the latter,
the two graphs differ by a single node with its features, labels, and all attached
edges. Accordingly, the definitions of edge-level and node-level DP are derived
from these definitions [37]. Specifically, an algorithm A provides edge-/node-level
(ε, δ)-DP if for every two edge-/node-level adjacent graph datasets G and G′ and
any set of outputs S ⊆ Range(A), we have Pr[A(G) ∈ S] ≤ eε Pr[A(G′) ∈ S] + δ.

3.2 Graph Neural Networks

Consider a graph G = (V, E) with a set of nodes V = {v1, . . . , vN} and edges
E represented by an adjacency matrix A ∈ {0, 1}N×N . Node features are rep-
resented by a matrix X ∈ RN×d, where Xi denotes the d-dimensional feature

ProGAP: Progressive GNN with Differential Privacy 5

vector of node vi. A common K-layer GNN is composed of K layers of graph
convolution that are applied sequentially. Specifically, layer k takes as input the
adjacency matrix A and the node embeddings produced by layer k− 1, denoted
by X(k−1), and outputs a new embedding for each node by aggregating the em-
beddings of its adjacent neighbors, followed by a neural network transformation.
In its simplest form, the formal update rule for layer k can be written as follows:

X(k) = MLP
(
Agg(A,X(k−1)); Θ(k)

)
, (1)

where Agg is a differentiable permutation-invariant neighborhood aggregation
function and MLP denotes a multilayer perceptron parameterized by Θ(k) that
takes the aggregated embeddings as input and produces a new embedding for
each node. The aggregation function can take various forms, such as mean, sum,
or max pooling. The input to the first layer is X(0) = X, i.e., the initial node
features. The output of the final layer X(K) can then be used for downstream
tasks, such as node classification or link prediction.

3.3 Problem Definition

Consistent with prior work [8,39], we focus on the node classification task. Con-
sider a GNN-based node classification model M(A,X; Θ) parameterized by a
set of parameters Θ that takes the adjacency matrix A and the node features
X, and outputs the corresponding predicted node labels Ŷ:

Ŷ =M(A,X; Θ). (2)

We seek to minimize a standard classification loss function L, such as cross-
entropy, with respect to the set of model parameters Θ:

arg min
Θ
L(M(A,X; Θ),Y), (3)

where Y ∈ {0, 1}N×C is the ground-truth node labels with C being the number of
classes. Given a graph dataset G = (V, E ,X,Y), our goal is to ensure the privacy
of G at both the training (Eq. 3) and inference (Eq. 2) phases of the model M,
using the differential privacy notions defined for graphs, i.e., edge-level and node-
level DP. Note that preserving privacy during the inference stage is of utmost
importance since the adjacency information of the graph is still used at inference
time to generate the predicted labels, and thus sensitive information about the
graph could potentially be leaked even with Θ being differentially private [39].

4 Proposed Method

In this section, we present our proposed ProGAP method, which leverages the
aggregation perturbation (AP) technique [39] to ensure differential privacy but
introduces a novel progressive learning scheme to restrain the privacy costs of AP
incurred during training. The overview of ProGAP architecture is illustrated
in Figure 1, and its forward propagation (inference) and training algorithms are
presented in Algorithm 1 and Algorithm 2, respectively. In the following, we first
describe our method in detail and then analyze its privacy guarantees.

6 S. Sajadmanesh and D. Gatica-Perez

MLP NAP MLP NAP MLP

JK

C
ac

he

MLP

JK

MLP

JK

MLP

C
ac

he

Stage 0 Stage 1 Stage 2

Fig. 1. An example ProGAP architecture with three stages. MLP and JK repre-
sent multi-layer perceptron and Jumping Knowledge [47] modules, respectively. NAP
denotes the normalize-aggregate-perturb module used to ensure the privacy of the ad-
jacency matrix, with its output cached immediately after computation to save privacy
budget. Training is done progressively, starting with the first stage and then expanding
to the second and third stages, each using its own head MLP. The final prediction is
obtained by the head MLP of the last stage.

4.1 Model Architecture and Training

We start by considering a simple non-private sequential GNN modelM with K
aggregation layers as the following:

X(0) = MLP
(0)
base

(
X; Θ

(0)
base

)
, (4)

X(k) = MLP
(k)
base

(
Agg(A,X(k−1)); Θ

(k)
base

)
, ∀k ∈ {1, . . . ,K}, (5)

Ŷ = MLPhead

(
X(K); Θhead

)
, (6)

where X(k) is the node embeddings generated at layer k by MLP
(k)
base having

parameters Θ
(k)
base, and MLPhead is a multi-layer perceptron parameterized by

Θhead with the softmax activation function that maps the final embeddings X(K)

to the predicted class probabilities Ŷ.
To make this model differentially private, we follow the aggregation per-

turbation technique proposed by Sajadmaneshet al. [39] and add noise to the
output of the aggregation function. Specifically, we replace the original aggre-
gation function Agg in Eq. 5 with a Normalize-Aggregate-Perturb mechanism
defined as:

NAP (A,X;σ) =

 N∑
j=1

Xi

‖Xi‖2
Aj,i +N (0, σ2Id) | ∀i ∈ {1, . . . , N}

 , (7)

where N is the number of nodes, d is the dimension of the input node embed-
dings, and σ is the standard deviation of the Gaussian noise. Concretely, the

ProGAP: Progressive GNN with Differential Privacy 7

Algorithm 1: ProGAP Forward Propagation Ms (A,X;σ,Ps)

Input : Stage s, adjacency matrix A; node features X; noise standard
deviation σ; model parameters Ps =

⋃s
k=0{Θ

(k)
base}∪ {Θ

(s)
jump,Θ

(s)
head}

Output : Predicated node labels Ŷ(s)

1 X̃(0) ← X
2 for k ∈ {0, . . . , s} do

3 if k > 0 and X̃(k) is not cached then

4 X̃(k) ← NAP(A, X̃(k−1);σ)

5 Cache X̃(k)

6 end

7 X(k) ←MLP
(k)
base

(
X̃(k); Θ

(k)
base

)
8 end

9 Ŷ(s) ←MLP
(s)
head

(
JK(s)({X(0), . . . ,X(s)}; Θ(s)

jump); Θ
(s)
head

)
10 return Ŷ(s)

NAP mechanism row-normalizes the input embeddings to limit the contribution
of each node to the aggregated output, then applies the sum aggregation function
followed by adding Gaussian noise to the results.

It can be easily shown that the resulting model provides edge-level DP as
every query to the adjacency matrix A is immediately perturbed with noise.
However, training such a model comes at the cost of a significant increase in
the privacy budget, which is proportional to the number of queries to the ad-
jacency matrix. Concretely, with T training iterations, the NAP mechanism is
queried KT times (at each forward pass and each layer), leading to an excessive
accumulated privacy cost of O(

√
KT).

To reduce this cost, we propose a progressive training approach as the fol-
lowing: We first split the model M into K + 1 overlapping submodels, where
submodel Ms, s ∈ {0, 1, . . . ,K}, is defined as:

X̃(s) = NAP
(
A,X(s−1);σ

)
, (8)

X(s) = MLP
(s)
base

(
X̃(s); Θ

(s)
base

)
, (9)

Ŷ(s) = MLP
(s)
head

(
JK(s)(

s⋃
k=0

{X(k)}; Θ(s)
jump); Θ

(s)
head

)
, (10)

where X̃(s) is the noisy aggregate embeddings of Ms, with X̃(0) = X. JK(s) is

a Jumping Knowledge module [47] with parameters Θ
(s)
jump that combines the

embeddings generated by submodelsM0 toMs, and MLP
(s)
head is a lightweight,

1-layer head MLP with parameters Θ
(s)
head used to train Ms. Finally, Ŷ(s) is

the output predictions of Ms. Then, we progressively train the model in K + 1
stages, starting from the shallowest submodel M0 and gradually expanding to

8 S. Sajadmanesh and D. Gatica-Perez

Algorithm 2: ProGAP Training

Input : Adjacency matrix A; node features X; node labels Y; model depth
K; noise standard deviation σ;

Output : Trained model parameters P?
K

1 initialize Θ
(0)
base,Θ

(0)
jump,Θ

(0)
head randomly

2 P0 ← {Θ(0)
base,Θ

(0)
jump,Θ

(0)
head}

3 for s ∈ {0, . . . ,K} do

4 P?
s ← arg minP L

(
Ms (A,X;σ,Ps) ,Y

)
5 if s < K then

6 initialize Θ
(s+1)
base ,Θ

(s+1)
jump ,Θ

(s+1)
head randomly

7 Ps+1 ← P?
s ∪ {Θ

(s+1)
base ,Θ

(s+1)
jump ,Θ

(s+1)
head } \ {Θ

?(s)
jump,Θ

?(s)
head}

8 end

9 end
10 return P?

K

the deepest submodelMK (which is equivalent to the full modelM) as explained
by Algorithm 2. For the final inference after training, we simply use the labels
predicted by the last submodel MK , i.e., Ŷ = Ŷ(K).

The key point in this training strategy is that we immediately save the outputs
of NAP modules on their first query and reuse them throughout the training.
More specifically, at each stage s, the perturbed aggregate embedding matrix
X̃(s) computed in the first forward pass ofMs (via Eq. 8) is stored in the cache
and reused in all further queries. This caching mechanism allows us to reduce
the privacy costs of the model by a factor of T , as the NAP module in this
case is only queried K times (once per stage) instead of KT times. At the same

time, the aggregations X̃(s) are computed over the embeddings X(s−1) that are
already learned in the preceding stage s−1, which provide more expressive power
than the raw node features as they also encode information from the adjacency
matrix and node labels, and thus lead to better performance.

Remark 1. The proposed ProGAP model can also be trained in a layerwise

fashion, i.e., by training each layer MLP
(k)
base individually, while keeping the

parameters of the preceding layers frozen and using the same caching mechanism.
Note that this is different from the proposed progressive approach, in which all

the parameters from layer 0 to layer s, i.e., Θ
(0)
base, . . . ,Θ

(s)
base are trained together

in each stage s. In Section 6, we show that such a progressive training strategy
leads to better performance than layerwise training.

4.2 Privacy Analysis

With the following theorem, we show that the proposed training strategy pro-
vides edge-level DP. The proof is provided in Appendix A.2.

ProGAP: Progressive GNN with Differential Privacy 9

Theorem 1. Given the maximum stage K ≥ 0 and noise variance σ2, for any
δ ∈ (0, 1) Algorithm 2 satisfies edge-level (ε, δ)-DP with ε = K

2σ2 +
√

2K log (1/δ)/σ.

To ensure node-level DP, however, we must train every submodel using DP-
SGD or its variants, as in this case node features and labels are also private and
can be leaked with non-private training. Theorem 2 establishes the node-level
DP guarantee of ProGAP’s training algorithm when combined with DP-SGD:

Theorem 2. Given the number of nodes N , batch-size B < N , number of per-
stage training iterations T , gradient clipping threshold C > 0, maximum stage
K ≥ 0, maximum cut-off degree D ≥ 1, noise variance for aggregation perturba-
tion σ2

AP > 0, and noise variance for gradient perturbation σ2
GP > 0, Algorithm 2

satisfies node-level (ε, δ)-DP for any δ ∈ (0, 1) with:

ε ≤ min
α>1

(K + 1)T

α− 1
log

{(
1− B

N

)α−1(
α
B

N
− B

N
+ 1

)

+

(
α

2

)(
B

N

)2(
1− B

N

)α−2
e
C2

σ2
GP

+

α∑
l=3

(
α

l

)(
1− B

N

)α−l(
B

N

)l
e
(l−1)(C2l

2σ2
GP

)

}

+
DKα

2σ2
AP

+
log(1/δ)

α− 1
,

providing that the optimization in line 4 of Algorithm 2 is done using DP-SGD.

The proof is deferred to Appendix A.3. Note that to decrease the node-level
sensitivity of the NAP mechanism (i.e., the impact of adding/removing a node
on the output of the NAP mechanism), we assume an upper bound D on node
degrees, and randomly sample edges from the graph to ensure that each node
has no more than D outgoing edges. This is a standard technique to ensure
bounded-degree graphs [8, 39].

In addition to training privacy, ProGAP also guarantees privacy during
inference at both edge and node levels without any further privacy costs. This
is because the entire noisy aggregate matrices X̃(i) corresponding to all the
nodes –both training and test ones– are already computed and cached during
training and reused for inference (i.e., lines 4 and 5 of Algorithm 1 is not executed
at inference time). As a result, the inference for a node no longer depends on
its private neighborhood and is done by post-processing differentially private
outputs, which does not incur any additional privacy costs.

5 Experimental Setup

We test our proposed method on node-wise classification tasks and evaluate its
effectiveness in terms of classification accuracy and privacy guarantees.

10 S. Sajadmanesh and D. Gatica-Perez

Table 1. Dataset Statistics.

Dataset # Nodes # Edges # Features # Classes Med. Degree

Facebook 26,406 2,117,924 501 6 62

Reddit 116,713 46,233,380 602 8 209

Amazon 1,790,731 80,966,832 100 10 22

Facebook-100 1,120,280 86,304,478 537 6 57

WeNet 37,576 22,684,206 44 4 286

5.1 Datasets

We conduct experiments on three real-world datasets that have been used in
previous work [8, 33, 39], namely Facebook [40], Reddit [16], and Amazon [6],
and also two new datasets: Facebook-100 [40] and WeNet [13,30]. The Facebook
dataset is a collection of anonymized social network data from UIUC students,
where nodes represent users, edges indicate friendships, and the task is to pre-
dict students’ class year. The Reddit dataset comprises a set of Reddit posts as
nodes, where edges represent if the same user commented on both posts, and
the goal is to predict the posts’ subreddit. The Amazon dataset is a product
co-purchasing network, with nodes representing products and edges indicating
if two products are purchased together, and the objective is to predict product
category. Facebook-100 is an extended version of the Facebook dataset combin-
ing the social network of 100 different American universities. WeNet is a mobile
sensing dataset collected from university students in four different countries.
Nodes represent eating events, which are linked based on the similarity of loca-
tion and Wi-Fi sensor readings. Node features are extracted based on cellular
and application sensors, and the goal is to predict the country of the events.A
summary of the datasets is provided in Table 1.

5.2 Baselines

We compare our ProGAP method against GAP [39], which is the closest re-
lated work to ours. We use GAP’s official implementation on GitHub1 and follow
the same experimental setup as reported in the original paper. We do not in-
clude other available differentially private GNN approaches as they either: (i)
are outperformed by GAP (e.g., [8, 44]) or (ii) have different problem settings
(e.g., [34, 38]) that make them not directly comparable to our method.

5.3 Implementation Details

We use PyTorch Geometric [11] for implementing the models, autodp2 for pri-
vacy accounting, and Opacus [49] for DP training. We follow the same experi-
mental setup as GAP [39], and randomly split the nodes in all the datasets into

1 https://github.com/sisaman/GAP
2 https://github.com/yuxiangw/autodp

https://github.com/sisaman/GAP
https://github.com/yuxiangw/autodp

ProGAP: Progressive GNN with Differential Privacy 11

Table 2. Comparison of Experimental Results (Mean Accuracy ± 95% CI)

Privacy
Level

Method ε Facebook Reddit Amazon Facebook-100 Wenet

Non-
Private

ProGAP ∞ 84.5 ± 0.24 99.3 ± 0.03 93.3 ± 0.04 74.4 ± 0.14 73.9 ± 0.25

GAP ∞ 80.5 ± 0.42 99.5 ± 0.01 92.0 ± 0.10 66.4 ± 0.35 69.7 ± 0.14

Edge
Level

ProGAP 1.0 77.2 ± 0.33 97.8 ± 0.05 84.2 ± 0.07 56.9 ± 0.30 68.8 ± 0.23

GAP 1.0 69.4 ± 0.39 97.5 ± 0.06 78.8 ± 0.26 46.5 ± 0.58 62.4 ± 0.28

Node
Level

ProGAP 8.0 69.3 ± 0.33 94.0 ± 0.04 79.1 ± 0.10 48.5 ± 0.36 61.0 ± 0.34

GAP 8.0 63.9 ± 0.49 93.9 ± 0.09 77.6 ± 0.07 43.0 ± 0.20 58.2 ± 0.39

training, validation, and test sets with 75/10/15% ratio, respectively. We vary
ε within {0.25, 0.5, 1, 2, 4,∞} for the edge-level privacy (ε = ∞ corresponds to
the non-private setting) and within {2, 4, 8, 16, 32} for the node-level privacy set-
ting. For each ε value, we tune the following hyperparameters based on the mean
validation set accuracy computed over 10 runs: MLPbase layers in {1, 2}, model
depth K in {1, 2, 3, 4, 5}, and learning rate in {0.01, 0.05}. The value of δ is fixed
per each dataset to be smaller than the inverse number of private units (i.e.,
edges for edge-level privacy, nodes for node-level privacy). For all cases, we set
the number of MLPhead layers to 1 and use concatenation for the JK modules.
Additionally, we set the number of hidden units to 16 and use the SeLU activa-
tion function [26]. We use batch normalization except for the node-level setting,
for which we use group normalization with one group. Under the edge-level set-
ting, we train the models with full-sized batches for 100 epochs using the Adam
optimizer and perform early stopping based on the validation set accuracy. For
the node-level setting, we use randomized neighbor sampling to bound the max-
imum degree D to 50 for Amazon, 100 for Facebook and Facebook-100, and 400
for Reddit and WeNet. We use DP-Adam [15] with a clipping threshold of 1.0.
We tune the number of per-stage epochs in {5, 10} and set the batch size to 256,
1024, 2048, 4096, and 4096 for Facebook, Reddit, Amazon, Facebook-100, and
WeNet, respectively. Finally, we report the average test accuracy over 10 runs
with 95% confidence intervals calculated by bootstrapping with 1000 samples.
We open-source our implementation on GitHub.3

6 Results and Discussion

6.1 Accuracy-Privacy Trade-off

Table 2 presents the test accuracy of ProGAP against GAP at three differ-
ent privacy levels: non-private with ε = ∞, edge-level privacy with ε = 1, and
node-level privacy with ε = 8. The results are reported as mean accuracy ± 95%
confidence interval. We observe that ProGAP outperforms GAP in almost all
cases, and often by a substantial margin. Specifically, in the non-private setting,

3 It will be made public upon acceptance.

12 S. Sajadmanesh and D. Gatica-Perez

0.25 0.50 1.00 2.00 4.00
Edge-Level Privacy Cost ()

90

92

94

96

98

100

A
cc

ur
ac

y
(%

)

Reddit

ProGAP
GAP

0.25 0.50 1.00 2.00 4.00
Edge-Level Privacy Cost ()

70

80

90

100

A
cc

ur
ac

y
(%

)

Amazon

ProGAP
GAP

0.25 0.50 1.00 2.00 4.00
Edge-Level Privacy Cost ()

20

40

60

80

A
cc

ur
ac

y
(%

)

Facebook-100

ProGAP
GAP

0.25 0.50 1.00 2.00 4.00
Edge-Level Privacy Cost ()

50

60

70

80

A
cc

ur
ac

y
(%

)

WeNet

ProGAP
GAP

2 4 8 16 32
Node Level Privacy Cost ()

85

90

95

100

A
cc

ur
ac

y
(%

)

Reddit

ProGAP
GAP

2 4 8 16 32
Node Level Privacy Cost ()

70

80

90

100

A
cc

ur
ac

y
(%

)

Amazon

ProGAP
GAP

2 4 8 16 32
Node Level Privacy Cost ()

30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

Facebook-100

ProGAP
GAP

2 4 8 16 32
Node Level Privacy Cost ()

50

60

70

80

A
cc

ur
ac

y
(%

)

Wenet

ProGAP
GAP

Fig. 2. Accuracy-privacy trade-off of edge-level (top) and node-level (bottom) private
methods. The dotted line represents the accuracy of the non-private ProGAP.

ProGAP achieves significantly higher test accuracies on all datasets except Red-
dit, on which GAP performs only slightly better. Under both the edge-level and
node-level privacy settings, however, ProGAP consistently outperforms GAP
on all datasets, with the largest performance gap of 10.4% and 5.5% accuracy
points, respectively, which are both observed on Facebook-100.

To examine the performance of the methods at different privacy budgets, we
varied ε between 0.25 to 4 for edge-level privacy and 2 to 32 for node-level private
algorithms. We then recorded the accuracy of each method for each privacy bud-
get. The outcome for both edge-level and node-level privacy settings is depicted
in Figure 2.4 Notably, we observe that ProGAP achieves higher accuracies than
GAP across all ε values tested and approaches the non-private accuracy more
quickly under both privacy settings. This is because in ProGAP each aggre-
gation step is computed on the node embeddings learned in the previous stage,
providing greater expressive power than GAP, which recursively computes the
aggregations on the initial node representations.

6.2 Convergence Analysis

We examine the convergence of ProGAP to further understand its behavior
under the two privacy settings. We report the training and validation accuracy
of ProGAP per training step under edge-level privacy with ε = 1 and node-level
privacy with ε = 8. For all datasets, ProGAP is trained for 100 and 10 epochs
per stage under edge and node-level privacy, respectively. We fix K = 5 in all
settings. The results are shown in Figure 3. We observe that both training and
validation accuracies increase as ProGAP moves from stage 0 to 5, with di-
minishing returns for more stages, which indicates the higher importance of the
nearby neighbors to each node, since the receptive field of nodes grows with the
number of stages. Moreover, we observe negligible discrepancies between train-
ing and validation accuracy when the model converges, which suggests higher

4 The results on the Facebook dataset are omitted due to space limitation.

ProGAP: Progressive GNN with Differential Privacy 13

0 100 200 300 400 500 600
Cumulative Epochs

0

25

50

75

100

A
cc

ur
ac

y
(%

)

Reddit

Train
Validation

0 100 200 300 400 500 600
Cumulative Epochs

0

20

40

60

80

A
cc

ur
ac

y
(%

)

Amazon

Train
Validation

0 100 200 300 400 500 600
Cumulative Epochs

10

20

30

40

50

A
cc

ur
ac

y
(%

)

Facebook-100

Train
Validation

0 100 200 300 400 500 600
Cumulative Epochs

20

40

60

A
cc

ur
ac

y
(%

)

WeNet

Train
Validation

0 10 20 30 40 50 60
Cumulative Epochs

60

70

80

90

A
cc

ur
ac

y
(%

)

Reddit

Train
Validation

0 10 20 30 40 50 60
Cumulative Epochs

70

72

74

76

A
cc

ur
ac

y
(%

)

Amazon

Train
Validation

0 10 20 30 40 50 60
Cumulative Epochs

35

40

45

50

A
cc

ur
ac

y
(%

)

Facebook-100

Train
Validation

0 10 20 30 40 50 60
Cumulative Epochs

45

50

55

60

A
cc

ur
ac

y
(%

)

WeNet

Train
Validation

Fig. 3. Convergence of ProGAP with K = 5 under edge-level (top) and node-level
(bottom) privacy, with ε = 1 and ε = 8, respectively.

resilience to privacy attacks, such as membership inference, which typically rely
on large generalization gaps. This result is in line with previous work showing
the effectiveness of DP against privacy attacks [20,21,32,39].

6.3 Effect of the Model Depth

We explore how the performance of ProGAP is influenced by modifying the
model depth K, or equivalently, the number of stages K+1. We experiment with
different values of K ranging from 1 to 5 and evaluate ProGAP’s accuracy un-
der varying privacy budgets of ε ∈ {0.25, 1, 4} for edge-level DP and ε ∈ {2, 8, 32}
for node-level privacy. The results are demonstrated in Figure 4. We observe that
ProGAP can generally gain advantages from increasing the depth, but there
is a compromise depending on the privacy budget: deeper models lead to bet-
ter accuracy under higher privacy budgets, while lower privacy budgets require
shallower models to achieve optimal performance. This is because ProGAP can
leverage data from more remote nodes with a higher value of K, which can boost
the final accuracy, but it also increases the amount of noise in the aggregations,
which has a detrimental effect on the model’s accuracy. When the privacy budget
is lower and the amount of noise is greater, ProGAP has the best performance
at smaller values of K. But as the privacy budget grows, the magnitude of the
noise is lowered, enabling the models to take advantage of greater K values.

6.4 Progressive vs. Layerwise Training

We compare the performance of ProGAP using two different training strategies:
progressive training and layerwise training. Similar to Table 2, we report the test
accuracy of both strategies at three different privacy levels: non-private with
ε = ∞, edge-level privacy with ε = 1, and node-level privacy with ε = 8. The
results are presented in Table 3. Overall, we observe that the progressive training
yields higher accuracies than the layerwise strategy in most cases, which as
mentioned in Section 4, is due to the higher capacity of the progressive approach.

14 S. Sajadmanesh and D. Gatica-Perez

1 2 3 4 5
Model Depth (K)

96

97

98
A

cc
ur

ac
y

(%
)

Reddit

= 4.00
= 1.00
= 0.25

1 2 3 4 5
Model Depth (K)

75

80

85

90

A
cc

ur
ac

y
(%

)

Amazon

= 4.00
= 1.00
= 0.25

1 2 3 4 5
Model Depth (K)

40

50

60

70

A
cc

ur
ac

y
(%

)

Facebook-100

= 4.00
= 1.00
= 0.25

1 2 3 4 5
Model Depth (K)

62.5

65.0

67.5

70.0

72.5

A
cc

ur
ac

y
(%

)

Wenet

= 4.00
= 1.00
= 0.25

1 2 3 4 5
Model Depth (K)

85

90

95

A
cc

ur
ac

y
(%

)

Reddit

= 32
= 8
= 2

1 2 3 4 5
Model Depth (K)

75

80

85

A
cc

ur
ac

y
(%

)

Amazon

= 32
= 8
= 2

1 2 3 4 5
Model Depth (K)

40

50

60

A
cc

ur
ac

y
(%

)

Facebook-100

= 32
= 8
= 2

1 2 3 4 5
Model Depth (K)

55

60

65

A
cc

ur
ac

y
(%

)

Wenet

= 32
= 8
= 2

Fig. 4. Effect of the model depth on ProGAP’s accuracy under edge-level (top) and
node-level (bottom) privacy.

Table 3. Accuracy Comparison of Progressive (PR) and Layerwise (LW) Training

Privacy
Level

ε
Training
Strategy

Facebook Reddit Amazon Facebook-100 Wenet

Non-
Private

∞
PR 84.5 ± 0.24 99.3 ± 0.03 93.3 ± 0.04 74.4 ± 0.14 73.9 ± 0.25

LW 85.6 ± 0.29 99.3 ± 0.03 92.9 ± 0.04 74.0 ± 0.16 71.9 ± 0.19

Edge
Level

1.0
PR 77.2 ± 0.33 97.8 ± 0.05 84.2 ± 0.07 56.9 ± 0.30 68.8 ± 0.23

LW 76.8 ± 0.22 98.0 ± 0.06 83.4 ± 0.08 55.7 ± 0.25 67.7 ± 0.25

Node
Level

8.0
PR 69.3 ± 0.33 94.0 ± 0.04 79.1 ± 0.10 48.5 ± 0.36 61.0 ± 0.34

LW 68.7 ± 0.48 94.0 ± 0.07 78.8 ± 0.05 49.2 ± 0.57 59.3 ± 0.42

7 Conclusion

In this paper, we introduced ProGAP, a novel differentially private GNN that
improves the challenging accuracy-privacy trade-off in learning from graph data.
Our approach uses a progressive training scheme that splits the GNN into a
sequence of overlapping submodels, each of which is trained over privately ag-
gregated node embeddings learned and cached by the previous submodels. By
combining this technique with the aggregation perturbation method, we formally
proved that ProGAP can ensure edge-level and node-level privacy guaran-
tees for both training and inference stages. Empirical evaluations on benchmark
graph datasets demonstrated that ProGAP can achieve state-of-the-art accu-
racy by outperforming existing methods. Future work could include exploring
new architectures or training strategies to further improve the accuracy-privacy
trade-off of differentially private GNNs, especially in the more challenging node-
level privacy setting.

ProGAP: Progressive GNN with Differential Privacy 15

Acknowledgments

This work was supported by the European Commission’s H2020 Program ICT-
48-2020, AI4Media Project, under grant number 951911. It was also supported by
the European Commission’s H2020 WeNet Project, under grant number 823783.

References

1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K.,
Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016
ACM SIGSAC conference on computer and communications security. pp. 308–318
(2016)

2. Ahmedt-Aristizabal, D., Armin, M.A., Denman, S., Fookes, C., Petersson, L.:
Graph-based deep learning for medical diagnosis and analysis: Past, present and
future. arXiv preprint arXiv:2105.13137 (2021)

3. Ayle, M., Schuchardt, J., Gosch, L., Zügner, D., Günnemann, S.: Training differ-
entially private graph neural networks with random walk sampling. arXiv preprint
arXiv:2301.00738 (2023)

4. Belilovsky, E., Eickenberg, M., Oyallon, E.: Decoupled greedy learning of CNNs.
In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference
on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp.
736–745. PMLR (13–18 Jul 2020)

5. Cheung, M., Moura, J.M.F.: Graph neural networks for covid-19 drug discovery.
In: 2020 IEEE International Conference on Big Data (Big Data). pp. 5646–5648
(2020). https://doi.org/10.1109/BigData50022.2020.9378164

6. Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. pp. 257–266 (2019)

7. Corso, G., Cavalleri, L., Beaini, D., Liò, P., Veličković, P.: Principal neighbourhood
aggregation for graph nets. In: Advances in Neural Information Processing Systems
(2020)

8. Daigavane, A., Madan, G., Sinha, A., Thakurta, A.G., Aggarwal, G., Jain,
P.: Node-level differentially private graph neural networks. arXiv preprint
arXiv:2111.15521 (2021)

9. Dwork, C.: Differential privacy: A survey of results. In: International conference
on theory and applications of models of computation. pp. 1–19. Springer (2008)

10. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Theory of cryptography conference. pp. 265–284. Springer
(2006)

11. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric.
In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

12. Fey, M., Lenssen, J.E., Weichert, F., Leskovec, J.: Gnnautoscale: Scalable and
expressive graph neural networks via historical embeddings. In: International Con-
ference on Machine Learning. pp. 3294–3304. PMLR (2021)

13. Giunchiglia, F., Bison, I., Busso, M., Chenu-Abente, R., Rodas, M., Zeni, M.,
Gunel, C., Veltri, G., De Götzen, A., Kun, P., et al.: A worldwide diversity pilot
on daily routines and social practices (2020) (2021)

https://doi.org/10.1109/BigData50022.2020.9378164

16 S. Sajadmanesh and D. Gatica-Perez

14. Gkalelis, N., Goulas, A., Galanopoulos, D., Mezaris, V.: Objectgraphs: Using ob-
jects and a graph convolutional network for the bottom-up recognition and ex-
planation of events in video. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 3375–3383 (2021)

15. Gylberth, R., Adnan, R., Yazid, S., Basaruddin, T.: Differentially private opti-
mization algorithms for deep neural networks. In: 2017 International Conference
on Advanced Computer Science and Information Systems (ICACSIS). pp. 387–394.
IEEE (2017)

16. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. pp. 1025–1035 (2017)

17. He, C., Li, S., Soltanolkotabi, M., Avestimehr, S.: Pipetransformer: Auto-
mated elastic pipelining for distributed training of transformers. arXiv preprint
arXiv:2102.03161 (2021)

18. He, X., Jia, J., Backes, M., Gong, N.Z., Zhang, Y.: Stealing links from graph
neural networks. In: 30th {USENIX} Security Symposium ({USENIX} Security
21) (2021)

19. He, X., Wen, R., Wu, Y., Backes, M., Shen, Y., Zhang, Y.: Node-level membership
inference attacks against graph neural networks. arXiv preprint arXiv:2102.05429
(2021)

20. Jagielski, M., Ullman, J.R., Oprea, A.: Auditing differentially private machine
learning: How private is private sgd? In: Proceedings of the Advances in Neural
Information Processing (NeurIPS). Virtual Event (December 2020)

21. Jayaraman, B., Evans, D.: Evaluating differentially private machine learning in
practice. In: 28th USENIX Security Symposium (USENIX Security 19). pp. 1895–
1912. USENIX Association, Santa Clara, CA (Aug 2019), https://www.usenix.org/
conference/usenixsecurity19/presentation/jayaraman

22. Jiang, W., Luo, J.: Graph neural network for traffic forecasting: A survey. Expert
Systems with Applications p. 117921 (2022)

23. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

24. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What
can we learn privately? SIAM Journal on Computing 40(3), 793–826 (2011)

25. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (ICLR) (2017)

26. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural
networks. In: Proceedings of the 31st international conference on neural informa-
tion processing systems. pp. 972–981 (2017)

27. Kolluri, A., Baluta, T., Hooi, B., Saxena, P.: Lpgnet: Link private
graph networks for node classification. In: Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Secu-
rity. p. 1813–1827. CCS ’22, Association for Computing Machinery,
New York, NY, USA (2022). https://doi.org/10.1145/3548606.3560705,
https://doi.org/10.1145/3548606.3560705

28. Li, Z., Murkute, J.V., Gyawali, P.K., Wang, L.: Progressive learning and disentan-
glement of hierarchical representations. arXiv preprint arXiv:2002.10549 (2020)

29. Lin, W., Li, B., Wang, C.: Towards private learning on decentralized graphs with
local differential privacy. IEEE Transactions on Information Forensics and Security
17, 2936–2946 (2022). https://doi.org/10.1109/TIFS.2022.3198283

https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://doi.org/10.1145/3548606.3560705
https://doi.org/10.1145/3548606.3560705
https://doi.org/10.1109/TIFS.2022.3198283

ProGAP: Progressive GNN with Differential Privacy 17

30. Meegahapola, L., Droz, W., Kun, P., de Götzen, A., Nutakki, C., Diwakar, S., Cor-
rea, S.R., Song, D., Xu, H., Bidoglia, M., et al.: Generalization and personalization
of mobile sensing-based mood inference models: An analysis of college students in
eight countries. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 6(4), 1–32 (2023)

31. Mironov, I.: Rényi differential privacy. In: 2017 IEEE 30th Computer Security
Foundations Symposium (CSF). pp. 263–275. IEEE (2017)

32. Nasr, M., Song, S., Thakurta, A., Papernot, N., Carlini, N.: Adversary instantia-
tion: Lower bounds for differentially private machine learning. In: Proceedings of
the IEEE Symposium on Security and Privacy (S&P). San Francisco, CA, USA
(May 2021)

33. Olatunji, I.E., Funke, T., Khosla, M.: Releasing graph neural networks with differ-
ential privacy guarantees. arXiv preprint arXiv:2109.08907 (2021)

34. Olatunji, I.E., Nejdl, W., Khosla, M.: Membership inference attack on graph neu-
ral networks. In: 2021 Third IEEE International Conference on Trust, Privacy
and Security in Intelligent Systems and Applications (TPS-ISA). pp. 11–20. IEEE
(2021)

35. Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I., Talwar, K.: Semi-
supervised knowledge transfer for deep learning from private training data. arXiv
preprint arXiv:1610.05755 (2016)

36. Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., Tang, J.: Deepinf: Social influ-
ence prediction with deep learning. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. pp. 2110–2119
(2018)

37. Raskhodnikova, S., Smith, A.: Differentially private analysis of graphs. Encyclope-
dia of Algorithms (2016)

38. Sajadmanesh, S., Gatica-Perez, D.: Locally private graph neural networks. In: Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. pp. 2130–2145 (2021)

39. Sajadmanesh, S., Shamsabadi, A.S., Bellet, A., Gatica-Perez, D.: Gap: Differ-
entially private graph neural networks with aggregation perturbation. In: 32nd
USENIX Security Symposium (USENIX Security 23). USENIX Association, Ana-
heim, CA (Aug 2023)

40. Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of facebook networks.
Physica A: Statistical Mechanics and its Applications 391(16), 4165–4180 (2012)

41. Wang, H.P., Stich, S., He, Y., Fritz, M.: Progfed: Effective, communication, and
computation efficient federated learning by progressive training. In: International
Conference on Machine Learning. pp. 23034–23054. PMLR (2022)

42. Wang, J., Zhang, S., Xiao, Y., Song, R.: A review on graph neural network methods
in financial applications. arXiv preprint arXiv:2111.15367 (2021)

43. Wang, Y., Perazzi, F., McWilliams, B., Sorkine-Hornung, A., Sorkine-Hornung,
O., Schroers, C.: A fully progressive approach to single-image super-resolution. In:
Proceedings of the IEEE conference on computer vision and pattern recognition
workshops. pp. 864–873 (2018)

44. Wu, F., Long, Y., Zhang, C., Li, B.: Linkteller: Recovering private edges from graph
neural networks via influence analysis. arXiv preprint arXiv:2108.06504 (2021)

45. Wu, R., Zhang, G., Lu, S., Chen, T.: Cascade ef-gan: Progressive facial expres-
sion editing with local focuses. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 5021–5030 (2020)

18 S. Sajadmanesh and D. Gatica-Perez

46. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural net-
works? In: International Conference on Learning Representations (2019), https:
//openreview.net/forum?id=ryGs6iA5Km

47. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Represen-
tation learning on graphs with jumping knowledge networks. In: Dy, J., Krause,
A. (eds.) Proceedings of the 35th International Conference on Machine Learning.
Proceedings of Machine Learning Research, vol. 80, pp. 5453–5462. PMLR, Stock-
holmsmässan, Stockholm Sweden (10–15 Jul 2018)

48. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. pp. 974–983 (2018)

49. Yousefpour, A., Shilov, I., Sablayrolles, A., Testuggine, D., Prasad, K., Malek,
M., Nguyen, J., Ghosh, S., Bharadwaj, A., Zhao, J., Cormode, G., Mironov,
I.: Opacus: User-friendly differential privacy library in PyTorch. arXiv preprint
arXiv:2109.12298 (2021)

50. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. Advances
in Neural Information Processing Systems 31, 5165–5175 (2018)

51. Zhang, M., Li, P., Xia, Y., Wang, K., Jin, L.: Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural
Information Processing Systems 34 (2021)

52. Zhu, Y., Wang, Y.X.: Poission subsampled rényi differential privacy. In: Chaudhuri,
K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 7634–
7642. PMLR (09–15 Jun 2019), https://proceedings.mlr.press/v97/zhu19c.html

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.mlr.press/v97/zhu19c.html

ProGAP: Progressive Graph Neural Networks
with Differential Privacy Guarantees

Supplementary Material

Sina Sajadmanesh and Daniel Gatica-Perez

Idiap Research Institute, EPFL
{sajadmanesh,gatica}@idiap.ch

A Deferred Theoretical Arguments

A.1 Background: Rényi Differential Privacy

The proofs presented in this section are based on Rényi Differential Privacy
(RDP) [31], which is an alternative definition of DP that gives tighter sequential
composition results. The formal definition of RDP is as follows:

Definition 1 (Rényi Differential Privacy [31]). Given α > 1 and ε > 0,
a randomized algorithm A satisfies (α, ε)-RDP if for every adjacent datasets X
and X ′, we have:

Dα (A(X)‖A(X ′)) ≤ ε, (1)

where Dα(P‖Q) is the Rényi divergence of order α between probability distribu-
tions P and Q defined as:

Dα(P‖Q) =
1

α− 1
logEx∼Q

[
P (x)

Q(x)

]α
.

A key property of RDP is that it can be converted to standard (ε, δ)-DP
using the Proposition 1 of [31], as follows:

Proposition 1 (From RDP to (ε, δ)-DP [31]). If A is an (α, ε)-RDP algo-
rithm, then it also satisfies (ε+ log(1/δ)/α−1, δ)-DP for any δ ∈ (0, 1).

A.2 Proof of Theorem 1

Proof. In Algorithm 2, the graph’s adjacency is only used when the NAP mech-
anism is invoked during the forward propagation of submodels M1 to MK .
According to Lemma 1 of [39], the edge-level sensitivity of the NAP mecha-
nism is 1, and thus based on Corollary 3 of [31], each individual query to the
NAP mechanism is (α, α/2σ2)-RDP. Due to ProGAP’s caching system, the NAP
mechanism is only invoked K times during training (once for each submodel),
and the rest of the training process does not query the graph edges. As a result,
Algorithm 2 can be seen as an adaptive composition of K NAP mechanisms,
which based on Proposition 1 of [31], is (α,Kα/2σ2)-RDP. According to Propo-

sition 3 of [31], this is equivalent to edge-level (ε, δ)-DP with ε = Kα
2σ2 + log(1/δ)

α−1 .

Minimizing this expression over α > 1 gives ε = K
2σ2 +

√
2K log (1/δ)/σ.

20 S. Sajadmanesh and D. Gatica-Perez

A.3 Proof of Theorem 2

Proof. Algorithm 2 is composed of K+1 stages, where each stage s ∈ {1, . . . ,K}
starts by computing and perturbing the aggregate embeddings (Eq. 8), which is
the only part where the graph adjacency information is involved. As this part
is privatized by the NAP mechanism, the rest of the process in stage s ≥ 1 is
just normal graph-agnostic training over tabular-like data, which is made private
using DP-SGD. The exception is stage 0, which does not use the graph’s adja-
cency information at all, and thus it is just privatized using DP-SGD. Therefore,
Algorithm 2 can be seen as an adaptive composition of K NAP mechanisms and
K + 1 DP-SGD algorithms. According to Lemma 3 of [39], the NAP mechanism
is node-level (α,Dα/2σ2

AP)-RDP. The DP-SGD algorithm itself is a composition
of T subsampled Gaussian mechanisms, which according to Theorem 11 of [52]
and Proposition 1 of [31] is (α, εDPSGD)-RDP, where:

εDPSGD ≤
T

α− 1
log

{(
1− B

N

)α−1(
α
B

N
− B

N
+ 1

)

+

(
α

2

)(
B

N

)2(
1− B

N

)α−2
e
C2

σ2
GP

+

α∑
l=3

(
α

l

)(
1− B

N

)α−l(
B

N

)l
e
(l−1)(C2l

2σ2
GP

)

}
.

Overall, according to Proposition 1 of [31], the composition of K NAP mecha-
nisms and K + 1 DP-SGD algorithms is (α, εtotal)-RDP, where:

εtotal ≤
(K + 1)T

α− 1
log

{(
1− B

N

)α−1(
α
B

N
− B

N
+ 1

)

+

(
α

2

)(
B

N

)2(
1− B

N

)α−2
e
C2

σ2
GP

+

α∑
l=3

(
α

l

)(
1− B

N

)α−l(
B

N

)l
e
(l−1)(C2l

2σ2
GP

)

}

+
DKα

2σ2
AP

.

ProGAP: Progressive GNN with Differential Privacy 21

The proof is completed by applying Proposition 3 of [31] to the above expression
and minimizing the upper bound over α > 1:

ε ≤ min
α>1

(K + 1)T

α− 1
log

{(
1− B

N

)α−1(
α
B

N
− B

N
+ 1

)

+

(
α

2

)(
B

N

)2(
1− B

N

)α−2
e
C2

σ2
GP

+

α∑
l=3

(
α

l

)(
1− B

N

)α−l(
B

N

)l
e
(l−1)(C2l

2σ2
GP

)

}

+
DKα

2σ2
AP

+
log(1/δ)

α− 1
,

	ProGAP: Progressive Graph Neural Networks with Differential Privacy Guarantees
	ProGAP: Progressive Graph Neural Networks with Differential Privacy Guarantees

