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Abstract
This position paper puts forward machine coaching
as a form of interactive machine learning that em-
phasizes the requirement for humans and machines
to externalize their internal reasoning process in a
manner that is understandable, at least at a basic le-
vel, by the other party. We posit that this mutual un-
derstanding leads to a computationally and cogniti-
vely lighter interaction, supports the run-time per-
sonalization of machines even by non-technically-
savvy humans, makes any machine biases explicit
and the process of their acquisition transparent, and
facilitates the development of AI systems that can,
by design, explain and be explained to. Backed by
psychological theories of human reasoning and re-
cent technical work, this paper adopts the working
hypothesis that argumentation over symbolic rule-
based knowledge offers a reasonable common lan-
guage and semantics that machines and humans can
utilize when interacting through machine coaching.

1 Disrupting Knowledge Work Automation
Identified by the McKinsey Global Institute as one of twelve
major disruptive technologies [Manyika et al., 2013], auto-
mation of knowledge work has the second largest potential
for economic impact by the year 2025, reaching $5–7 trillion
in value, and affecting 27% of the global employment costs
and 9% of the global workforce, while benefiting a broad spe-
ctrum of professions: common business functions (e.g., call
center sales, administrative support, and customer service),
social sector services (e.g., education, health care), technical
professions (e.g., software design, drug discovery), manage-
ment, and professional services (e.g., law, financial).

The game-changing potential of mechanizing knowledge
acquisition and maintenance aligns with key recommendati-
ons in the 2010 and 2013 reports of the U.S.A. President’s
Council of Advisors on Science and Technology, who identi-
fied the need for a bottom-up data-driven approach to know-
ledge given the increasing pervasiveness of data on the Web
and other sources [PCAST, 2010; 2013]. Based on these re-
ports, “Automated analysis techniques such as data mining
and machine learning facilitate the transformation of data into
knowledge, and of knowledge into action.”, and “This ‘com-
putational knowledge extraction’ lies at the heart of 21st cen-
tury discovery. [...] Advancing these tools, so that science

may advance, is a major challenge for Networking and Infor-
mation Technology Research and Development. The world
of science is transitioning from data-poor to data-rich, vastly
expanding the potential for new breakthroughs [...]”.

Despite the striking advances of data-driven AI, the disru-
ption forecasted by the McKinsey Global Institute has yet to
materialize. Instead of replacing knowledge workers with au-
tomated systems, modern Machine Learning has effectively
revamped the role of humans into a more menial, albeit a still
necessary, one: that of the data annotator. This change in the
role of humans is reminiscent of the evolution of their role be-
tween the first and second industrial revolutions — from skil-
led problem solvers who operated machines to “blue-collar”
assembly-line workers that undertook menial tasks that could
not be feasibly or cost-effectively automated by machines —
and is a far cry from the role that humans have in the fourth
industrial revolution as “white-collar” directors of machine
operations; a role that is presumably much more aligned with
the disruption envisioned by the McKinsey Global Institute.

Dislodging the current role of humans towards becoming
“white-collar” workers is, we believe, the primary means by
which disruption in knowledge work automation will be fa-
cilitated. Much in the same way that the fourth industrial re-
volution is characterized by enhanced system-to-system com-
munication, analogously the new role of humans should be,
we posit, one that enhances human-to-machine communica-
tion, going beyond the task of data annotation or learning su-
pervision, and lifting their role to that of machine coaches.

This position paper proposes the development of a mach-
ine coaching paradigm that (i) retains those characteristics of
machine learning (e.g., induction, generalization, statistical
guarantees) that have been found to be useful in dealing with
the analysis of data, and that (ii) promotes a form of human-
machine interaction that facilitates human efforts in endowing
machines with the ability to explain and be explained to.

In addition to discussing how related work from formal ar-
gumentation and interactive machine learning can be used as
a basis for this new paradigm, we also take a first step towards
formalizing the desiderata on the interaction that takes place
during a machine coaching session, and we propose a particu-
lar protocol that the human can use to contribute knowledge
to the machine for which we can establish certain guarantees.

2 Machine Coaching via Argumentation
Putting aside their development-time role in the design of al-
gorithms and the identification of relevant features in the as-



sociated input and output spaces, the role of humans during
the actual process of knowledge acquisition and maintena-
nce is, for the most part, that of data annotators or learning
supervisors, tagging images or objects of interest with the in-
tended — whatever this is defined to be — label or inference.

In the typical case, these tags are not accompanied by any
form of explanation — neither on how that label or inference
was reached by the human, nor on why it might be appropri-
ate (or more appropriate than some other tag) — and hence
reveal nothing in terms of the internal reasoning of the human.
Relatedly, the human is rarely aware of how the tags are to be
consumed, and reasoned with, by the machine, and does not
in general, know how the machine operates internally. Even
in attempts to make machine learning more accessible to hu-
mans (e.g., through machine teaching [Simard et al., 2017]),
machines are still (or purposefully) treated as black-boxes.

It is instructive to consider a form of interaction where hu-
mans explicate their reasoning process, and explain to the ma-
chine how some particular tag was derived, or why a certain
alternative tag (perhaps one proposed by the machine) is inap-
propriate. For explanations to be meaningful, humans need to
have a basic understanding of the machine’s learning and re-
asoning processes, so that they can adapt the information that
they offer based on how it will be used by the machine.

Such human understanding of the operation of existing sy-
stems is not very pronounced, but it is not completely absent
either. When interacting with a web search engine, for exam-
ple, most humans have a basic understanding of how results
are returned for a query, and can adapt their query to get more
desirable results. Machine coaching seeks to elevate such pri-
mitive forms of dialogue and mutual understanding between
humans and machines, by offering a fundamentally more sui-
table language of communication that makes explicit the in-
ternal reasoning of the machine to the human, and vice versa.

Envisioning the resulting interaction between humans and
machines as a form of symbiosis, where a human coach “nur-
tures” a machine cognitive assistant towards adopting beliefs
and associated explanations akin to those of the human, our
proposal for developing a machine coaching paradigm is in-
spired from, and adopts some of, the key findings of existing
psychological theories of learning and reasoning. In the pre-
sent position paper we propose the working hypothesis that
argumentation offers a promising vehicle to establish mutual
understanding of reasoning between humans and machines.

Psychological evidence suggests that argumentation is in-
tegral in the human reasoning process [Mercier and Sperber,
2011], and that humans can consciously represent knowledge
activated during their argumentative reasoning in the form of
rules [Diakidoy et al., 2017]. In addition, the dialectical con-
text in which argumentation will be used for machine coach-
ing is in line with further psychological evidence suggesting
that even though humans are “biased and lazy when they pro-
duce arguments” in a solitary setting, they are “objective and
demanding when they evaluate others’ arguments” in a diale-
ctical setting [Mercier, 2016]. At the same time, argumenta-
tion has also been extensively studied within Artificial Intel-
ligence [Dung, 1995], and has been proposed as the basis for
designing cognitive assistants [Kakas and Michael, 2016].

We acknowledge, of course, that the specific ways in which
humans and machines internally represent and reason with ar-
guments will differ. For one, machines will presumably adopt
a formal representation of arguments, as appropriate to mech-

anize the reasoning process, whereas humans might be more
comfortable using some specified subset of natural language.

To facilitate the interaction and the translation between the
internal representations of the interlocutors, the use of some
form of a controlled natural language [Kuhn, 2014] seems ap-
propriate. The scenario below shows what we envision to be
a typical interaction between a human and a machine acting
as their cognitive assistant for handling incoming calls, high-
lighting the use of machine coaching over machine learning.

The assistant can perceive information such as: the user’s
location and movement through the phone’s sensors, calen-
dar appointments and contacts, current date and time, etc.
The assistant can execute actions such as: send SMS messa-
ges, decline incoming phone calls, set notifications, etc. Du-
ring development, and independently of the user’s profile, the
assistant is initialized with the following knowledge:
r1 : if day is from Monday to Friday then not day-off
r2 : if time is from 9am to 5pm and not day-off then at work
r3 : if time is from 12am to 6am then not may interrupt
r4 : if at work and in a meeting then not may interrupt
r5 : if at work then set ringing volume to a low audible level
r6 : if not may interrupt and call then disable ringing

During run-time, the user perceives and reacts to the as-
sistant’s actions / inactions in various contexts. If, for insta-
nce, the user repeatedly accepts incoming calls from number
S (corresponding, say, to the user’s spouse!), even when rin-
ging has been disabled by the assistant, then this may eventu-
ally lead to the following revision of a rule: “r6 : if not may
interrupt and call and not number S then disable ringing”.

Besides giving rise to non-modular policies that quickly be-
come unwieldy and unreadable to the user, the above process
of learning requires multiple reactions from the user before
identifying which of the numerous aspects of a context are the
ones that are predictive of the user’s behavior. Even when le-
arning does identify some predictive aspect of a context, there
is a distinct risk that the aspect will be a non-commonsensical
or even an undesirable one. If, for instance, it so happens
(during an overseas trip of the user) that calls from number S
are often received between 12am and 6am, and those are the
only such calls, then the assistant would be equally justified
to drop rule r3 instead of revising rule r6 as above.

Through machine coaching, however, the user has a more
direct involvement in the unambiguous revision of the assi-
stant’s policy, even from the very first time that the assistant’s
action deviates from the user’s expectation. This may happen,
for instance, if the user receives a call during a work meeting,
triggering the following dialogue (right after the event, at the
request of the user, or at a pre-scheduled coaching session):
User: Why did you disable ringing for a call today?

The assistant searches for calls that match the context and
action specified by the user, identifies a relevant call from
number S, retrieves the supporting argument, and responds:
Assistant: Because today is Tuesday, the call was received
at 11:30am, and you were in a meeting, and I concluded, by
applying the rules r1, r2, r4, that I may not interrupt you.
User: You may interrupt me when my spouse calls!

Resolving the coreference between “my spouse calls” and
“call from number S”, or identifying in the user’s contact list
the number that belongs to the user’s spouse, the assistant



constructs and integrates the following rule in its knowledge
base, with priority over existing conflicting rules r3 and r4:
r7 : if call and number S then may interrupt

Analogously, if the user receives a call during a weekend
work trip abroad, the following dialogue could occur after the
call (under the angry stares of colleagues for the ringing):
User: Why was the ringing volume not at a lower level for
the call that has just concluded?

The assistant searches for an argument supporting its de-
cision not to lower the ringing volume, and responds:
Assistant: Today is Saturday, your GPS location shows that
you are abroad, and your calendar shows that you are on a
work trip, but I was unable to conclude that you are at work.
User: If I am abroad on a work trip, then I am at work.

The assistant constructs and integrates the following rule
in its knowledge base (which introduces no conflicts):
r8 : if abroad and on work trip then at work

Rules constructed and integrated based on user advice are
by no means assumed to be infallible and universally appli-
cable, and might thereafter appear in arguments that lead the
assistant to future wrong actions / inactions. Overall, howe-
ver, their integration is expected to help the assistant’s policy
quickly converge towards the user’s private expectations.

Using its knowledge, an assistant draws inferences on what
actions to take in a given context. Each set of rules that sup-
ports an inference corresponds to an argument that the assi-
stant could use to explain the taking of some action. Different
sets of rules lead to different inferences and arguments in their
support, possibly attacking other arguments by contradicting
their (intermediate) inferences. The assistant seeks to iden-
tify a collection of arguments that defends all its attacks: any
counter-argument that attacks an argument in the collection,
is attacked back by an argument in the collection. Such a col-
lection allows the assistant not only to justify the taking of an
action, but also to defend the dismissal of an alternative one.

During any single round of machine coaching, the process
by which either a human or a machine offers an explanation to
their interlocutor can be approached as a form of explanation-
based generalization (EBG) [Mitchell et al., 1986]: Interpre-
ting the contents of one’s knowledge base as a domain theory,
the context as a training example, and the actions supported
by one’s knowledge in that context as a goal concept, one se-
eks to generalize the training example by regressing from the
goal concept to a sufficient condition that entails the goal co-
ncept, while satisfying an operationality criterion. This cri-
terion ensures that the resulting explanation will be in a form
that is operationally usable by the receiving party, while the
generalization condition ensures that the communicated kno-
wledge will not be overly-specific to the particular context.

3 Machine Coaching as Interactive ML
The technology of knowledge work automation has received
the second least media attention across the twelve disruptive
technologies that were identified in the McKinsey Global In-
stitute report, and has been the least publicized one given its
potential economic impact [Manyika et al., 2013]. The report
attributes this lack of media attention to significant organiza-
tional, cultural, and legal hurdles for the adoption of the te-
chnology, including risk-aversion by firms to adopt a techno-

logy until its benefits have been clearly proven, and resistance
due to lack of trust on its performance on new and previously
unforeseen circumstances, where mistakes may have signifi-
cant ramifications, including endangering human lives.

The machine coaching paradigm speaks directly to the is-
sues above for the adoption of the disruptive technology. Its
emphasis on building machines that are able to explain and
be explained to facilitates humans to gradually build trust to-
wards a machine’s performance through a dialectical intera-
ction, analogously to how they build trust towards new colle-
agues by getting to know their work and skills. Furthermore,
and especially for critical tasks for which humans may wish
to retain decision-making (e.g., in the medical domain), the
view of a machine as an assistant is appropriate for advising a
human, explaining why it reached a conclusion, and allowing
the human to evaluate the validity of the argument and decide
whether to adopt it on a per case basis. This is typically not
an option for machines built through machine learning, where
trust reduces to a statistic of the machine’s entire past perfor-
mance, and is not a function of each individual conclusion.

The above notwithstanding, machine coaching remains a
form of interactive machine learning, since a machine seeks
to learn to produce convincing arguments in support of its de-
cisions. Consequently, one needs to establish that the learning
goal can be satisfied reliably and efficiently, through a dialo-
gue with a human analogous to the one we exemplified for the
call-handling cognitive assistant. Based on our initial techni-
cal investigation, we suggest that the Probably Approxima-
tely Correct (PAC) learning semantics [Valiant, 1984] could
offer a solid basis for the formalization of machine coaching.

Departing from the majority of work in PAC learning, wh-
ich focuses on establishing objective guarantees on the end-
to-end correctness (against an external specification) of a ma-
chine’s decisions, a semantics for machine coaching must fo-
cus on establishing subjective guarantees on the persuasive-
ness / convincingness (for a certain user) of the explanations
offered for those decisions. It is possible that a position (e.g.,
“turn your phone off during the night”) might be prima facie
acceptable, but certain users might not find a given explana-
tion (e.g., “because it will help reduce your carbon footprint”)
convincing. It is, also, possible for certain users not to imme-
diately accept a position (e.g., “do not reply to your spouse’s
latest SMS message”) until convinced by a given explanation
(e.g., “because your phone has been infected by a computer
virus that steals your data through fake SMS messages”).

A learning-theoretic semantics for machine coaching will
serve to fulfil a second desideratum beyond that of establish-
ing formal guarantees on the appropriateness of the machine’s
decisions: that of allowing knowledge that has been acquired
through machine coaching to be seamlessly integrated with
knowledge that has been acquired through autonomous mach-
ine learning. The necessity for such an integration follows if
one observes that although machine coaching will end up pro-
ducing highly user-specific knowledge, some (perhaps, even,
a considerable) fraction of the produced knowledge will be
commonsensical, in that it will be common among multiple
potential users of an intelligent machine. It is preferable for
common knowledge to be acquired by a means other than ma-
chine coaching, lessening the burden on the users themselves.

Acknowledging the two different sources of knowledge is,
in fact, in line with our recent proposal on the dual role that
knowledge has to play in a cognitive assistant’s architecture



[Kakas and Michael, 2016]: both as a mechanism to compre-
hend a given situation / context, and as a mechanism to apply
a policy based on that comprehension. Commonsense world
knowledge is primarily geared towards the role of compreh-
ension, whereas machine-coached user-specific knowledge is
geared towards the role of specifying the policy to be applied.

This distinction is well-illustrated in our call-handling co-
gnitive assistant example, where rule r1 is meant to capture
a “definition” of a workday shared by several humans, used
during the comprehension and abstraction of the current con-
text to derive higher-level concepts and inferences from the
lower-level concepts and sensory inputs. By contrast, rule r7
is part of a user-specific policy for answering the phone, and
it leads, directly or indirectly, to the execution of an action.

To face head-on the challenge of “extracting worldly kno-
wledge” [PCAST, 2010] — rather than facts, which is the tar-
get of ongoing high-impact work [Carlson et al., 2010] — one
can utilize raw text as a source of training data. Work on au-
todidactic learning [Michael, 2008; 2009; 2013a] shows that
supervised learning can be used without the active involve-
ment of humans, by exploiting whatever “supervision” might
already be present in text. Extending autodidactic learning to
adopt techniques from argumentation mining [Lippi and Tor-
roni, 2016], and subsequently integrating it with machine co-
aching might lead to the realization of a uniform framework
for the disruptive technology of knowledge work automation.

Although the use of machine learning partly addresses cer-
tain subjectivity (and brittleness) concerns that would arise
had knowledge been gathered directly from knowledge en-
gineers or crowdworkers, machine-learned knowledge is still
prone to inheriting human biases present in the training data;
see, e.g., [Michael, 2013a] for a discussion on “websense ver-
sus commonsense knowledge”. Rule r1, for example, could
be, plausibly, induced by a machine learning algorithm that
extracts knowledge from Web text, yet it is not applicable in
certain Middle Eastern countries where Sunday is a workday.

Despite concerns on the “universality” of machine-learned
knowledge, we hypothesize that the bulk of this knowledge
will be usable, while those parts of the knowledge that might
end up supporting undesirable inferences can be subsequen-
tly debugged by users through machine coaching. Such de-
bugging will, obviously, lead to some replication of cognitive
work, and it will not fully eliminate bias, but will, instead, re-
place it with bias that aligns better with each user’s own prefe-
rences and beliefs. We expect that an appropriately-designed
study could show that despite these drawbacks, the proposed
two-step process of first acquiring world knowledge through
machine learning and then debugging it through machine co-
aching is preferable to either of the one-step alternatives.

4 Towards a Theory of Machine Coaching
In an effort to show that some key ideas surrounding machine
coaching can be made sufficiently concrete for mechanization
and analysis, we present below an attempt towards a formal
theory of machine coaching, adapting and extending techni-
cal ideas from our earlier work [Michael, 2017] on how ma-
chine coaching can be seen as a vehicle for realizing McCar-
thy’s [1959] vision of building an advice-taking machine.

We, certainly, do not claim here that our proposed formali-
zation is in any way unique or the only route forward. Nor do
we claim that the simple propositional language, which we

have chosen for readability purposes, suffices to capture the
more complex representation needed when reasoning, for in-
stance, in temporal settings with causal knowledge [Michael,
2013b]. Our sole aim here is to demonstrate a potential path
towards the formalizability of the interaction of argumenta-
tion and learning within the paradigm of machine coaching.

We start with a basic syntax for representing knowledge. A
literal is either an atom or its negation. Two literals are con-
flicting if one is an atom and the other is the atom’s negation;
the unique conflicting literal of a literal λ is denoted by λ. A
context x is a collection of pairwise non-conflicting literals;
the set of all contexts is X . A rule is an expression of the
form ϕ  τ, where the body ϕ of the rule is a finite conju-
nction of literals, and the head τ of the rule is a literal; the set
of all rules isR. Two rules are conflicting if their head literals
are conflicting. A knowledge base κ = 〈%,�〉 comprises a
finite collection % of rules, and an irreflexive antisymmetric
priority relation � over pairs of conflicting rules in % × %.

To define an argumentation framework [Dung, 1995], we
need to specify how arguments and attacks are induced from
a knowledge base. For concreteness, we adopt the following
choices under the ASPIC+ framework [Prakken, 2010]: axio-
matic premises (i.e., the context x is indisputable), defeasible
rules (i.e., all rules can be overridden), rebutting attacks (i.e.,
an argument is attacked by questioning one of its intermedi-
ate inferences), and application of rule preferences on the last
link (i.e., the attacking argument’s strength is determined by
the strength of its last rule). We formalize these choices next.

To define arguments induced by a set of rules % in a context
x, we start by interpreting literals in x as facts, and rules in %
as classical implications, and we draw inferences through the
repeated application of modus ponens. A minimal subset of
x and a minimal subset of % that lead, thus, to the inference
of a literal τ is an argument for τ in x under % (or under κ =
〈%,�〉). In an argument for τ, a rule with head τ, whenever
such one exists, is unique and it is the argument’s crown rule.

Given two arguments in a context x under a knowledge
base κ = 〈%,�〉, the first argument for literal τ attacks the
second argument on the latter’s rule r2 with head τ if: either
τ ∈ x (exogenous / external attack), or the former’s crown
rule r1 is such that r2 6� r1 (endogenous / internal attack).
Compared to assumption-based argumentation [Dung et al.,
2009], which also chains rules from premises to inferences,
our premises are not weak assumptions that are attacked by
other arguments; instead, arguments are attacked on their ru-
les, while premises themselves are only a source of attacks.

Overall, a knowledge base κ induces a contextualized ar-
gumentation system 〈Aκ ,Rκ〉, where Aκ is a mapping from
each context x ∈ X to the set Aκ(x) of all arguments in x
under κ, and Rκ is a mapping from each context x ∈ X to
the set Rκ(x) of all attacks between arguments in Aκ(x).

Among the typical extension-based semantics of argumen-
tation frameworks [Dung, 1995] we adopt the grounded se-
mantics for two reasons: it gives rise to a single model — in
line with psychological evidence on the construction of a sin-
gle intended model in human reasoning [Stenning and Lam-
balgen, 2012] — and the model’s computation is efficient.

The grounded model σκ(x) of a knowledge base κ in a
context x is the unique set ini, i → ∞ of arguments that sa-
tisfies the following conditions: in0 = out0 = ∅; for every
i > 0, ini is the set of arguments in Aκ(x) \ outi−1 that are
not attacked by arguments in Aκ(x) \ outi−1; and for every



i > 0, outi is the set of arguments in Aκ(x) that are attacked
by arguments in ini−1. An inference τ is supported by the
grounded model σκ(x) if σκ(x) includes an argument for τ.

Although computing the grounded model σκ(x) of κ on x
is efficient in the number of arguments in Aκ(x), this number
can be exponentially larger than the sizes of κ and x. It is an
easy exercise to construct a context x and a knowledge base κ
with t rules, such that σκ(x) includes O(2t) arguments and,
hence, trivially requires time exponential in t to be computed.

To avoid this exponential blowup in the size of the repre-
sentation and in the efficiency of the computation, we intro-
duce the dual representation 〈x, σ̃κ(x)〉 of a grounded model
σκ(x), where σ̃κ(x) is defined to be the set of rules that ap-
pear in σκ(x). Unlike work in assumption-based argumenta-
tion that also appeals to a concise representation of arguments
[Craven and Toni, 2016], our approach can cope with directed
cycles in the rules, and does not exclude the representation of
any argument. Our first result shows that, indeed, dual repre-
sentations have a one-to-one mapping to grounded models.

Theorem 4.1 Let 〈x, σ̃κ(x)〉 be the dual representation of
the grounded model σκ(x) of a knowledge base κ in a context
x. Then, σκ(x) is the set of arguments in x under σ̃κ(x).

Proof sketch: Every α ∈ σκ(x) is an argument in x under
σ̃κ(x). Let, now, α be an argument in x under σ̃κ(x). If α is
attacked on rule r by an argument α1 ∈ Aκ(x), and since r is
a rule in an argument α2 ∈ σκ(x), then α1 attacks α2. Since
α2 ∈ σκ(x), then an argument α3 ∈ σκ(x) attacks α1. Thus,
α is included in σκ(x) during its iterative construction. 2

Our second result shows that the dual representation can, as
claimed, be computed efficiently, justifying our approach to
introduce this concise representation of the grounded model.

Theorem 4.2 Consider a knowledge base κ and a context
x. Then, σ̃κ(x) can be computed in time polynomial in the
size of κ and x. Furthermore, there exists no algorithm that
computes σ̃κ(x) in time sub-linear in the size of κ and x.

Proof sketch: Starting from x, repeatedly apply modus po-
nens to construct the inference graph G of κ. Mark literals in
x and repeat the following until convergence: remove literals
that conflict with marked literals; retain only the crown rules
of arguments in G; mark rules r1 whose body literals are all
currently marked, and for which any other conflicting rule r2
is such that r1 � r2; mark the head of every marked rule.
Return the marked part of G, which is x and σ̃κ(x). 2

Putting the argumentation syntax and semantics above bri-
efly aside, we proceed to offer a learning-theoretic semantics
for machine coaching, by considering a variant of the typical
PAC definition [Valiant, 1984] that accommodates: (i) a bi-
lateral communication between the learner and the target, as
done during online learning (i.e., given an observation, make
a prediction and then get advice); (ii) an arbitrary advice in
response to a non-acceptable prediction made by the learner,
without necessarily specifying an acceptable prediction; (iii)
a learning goal that is not to identify the advice coming from
the target (i.e., given an observation and a prediction, identify
the advice), but to conform to the advice (i.e., given an obse-
rvation, identify a prediction that leads to no more advice).

A hypothesis function h : I → O maps inputs to outputs.
A feedback function f : I×O → A maps inputs and outputs
to pieces of advice in A. We ask that A includes, at least, the

special “no advice” elementX, and that for every input x ∈ I
there exists at least one output y ∈ O such that f(x, y) = X.
Then, a hypothesis h : I → O is (1 − ε)-approximately
conformant under the probability distribution D against a fe-
edback function f : I × O → A if f(x, h(x)) = X for an
input x drawn from D, except with probability at most ε over
the randomness of sampling inputs from D. The resulting
definition of learnability that we shall adopt is given below.
Definition 4.1 An algorithm is a (probably approximately)
conformant learner for the feedback class F (with input, out-
put, and advice spaces I , O, and A, respectively) using the
hypothesis class H (with input and output spaces I and O,
respectively) if for every real values δ, ε ∈ (0, 1], every pro-
bability distribution D over inputs in I with representation
size n, and every feedback function f ∈ F with a representa-
tion size s, the algorithm is given access to δ, ε, F , and it can
repeatedly invoke the following procedure:

It passively draws an input x from D, or it actively
chooses an input x from I; it selects an output y
from O; and it then asks for and receives f(x, y).
Each input x is a learning example, each output y
is a prediction, and f(x, y) is a piece of advice.

After time at most g(1/δ, 1/ε, n, s) the algorithm terminates
and returns, except with probability at most δ, a hypothesis
function h ∈ H that is (1 − ε)-approximately conformant
under D against f . If the function g grows only polynomially
in its parameters, then the algorithm is efficient.

Although we will not undertake here a systematic compari-
son between conformant learnability and PAC learnability, it
should be intuitively obvious that the choice of the feedback
class is what ultimately determines what is learnable: (i) there
exist feedback classes for which conformant learnability re-
duces to PAC learnability; (ii) there also exist feedback clas-
ses for which conformant learnability supports the learning of
strictly more expressive structures than PAC learnability.

Below, we construct a type (ii) feedback class F∗ that, we
hypothesize, could be cognitively compatible with the kind of
advice that humans can offer under our argumentation-based
machine coaching paradigm. A study to evaluate this hypo-
thesis could measure the cognitive load of humans while they
engage in machine coaching, using subjective methods (such
as self-reported questionnaires), behavioral measures (such as
reaction time and eye movement), and / or physiological me-
asures (such as heart rate and pupil dilation); see, e.g., [Skul-
mowski and Rey, 2017]. For this paper, we restrict ourselves
to establishing the efficient conformant learnability for F∗.

Consider a human with a private knowledge base κ =
〈%,�〉, and a machine aiming to predict what actions to take
according to κ in various contexts; i.e., the machine seeks to
learn to compute the dual grounded model 〈x, σ̃κ(x)〉 of κ
in various contexts x. The machine operates in an online fa-
shion, maintaining a hypothesis represented as a knowledge
base, and communicating to the human the rules y of the ar-
guments induced from that knowledge base (thus,O , 2R) to
support its decisions in given contexts x (thus, I , X). The
human, on the other hand, responds by offering a piece of
advice fκ(x, y). Although a variety of protocols can be con-
sidered on how fκ is selected, we shall analyze just one parti-
cular such protocol, which uses an advice space A , {X} ∪
({unrecognized, superfluous, incomplete, indefensible}×2R)



and returns advice according to the strategy below, breaking
ties arbitrarily as needed (e.g., for multiple superfluous rules):
• fκ(x, y)=〈unrecognized, {r}〉 for a rule r ∈ y that does

not belong in %. Hence, if the machine uses a rule r in its
prediction y that is not in the human’s knowledge base,
then the human responds that they do not recognize r.
• fκ(x, y)=〈superfluous, {r}〉 for a rule r ∈ y that is not

in an argument in x under y. Hence, if the machine uses
a rule r in its prediction y that is not contributing to any
argument, then the human responds that r is superfluous.
• fκ(x, y) = 〈incomplete, {r}〉 for a rule r ∈ σ̃κ(x) \ y

that is in an argument in x under y ∪ {r}. Hence, if the
machine fails to use a rule r in its prediction y that appe-
ars, however, in the human’s grounded model, and had
the machine used r it would have contributed to another
machine argument, then the human responds that y is
incomplete because of the non-inclusion of r in y.
• fκ(x, y)=〈indefensible, %0〉 for an argument 〈x0, %0〉 in
x under % that attacks an argument in x under y, but it
is not attacked by any argument in σκ(x). Hence, if the
machine’s prediction y has an argument that is attacked
by an argument %0, and this attack cannot be defended by
any argument in the human’s grounded model, then the
human responds that the attack from %0 is indefensible.

• fκ(x, y)=X when none of the above conditions is met.
Hence, if the human does not find one of the above re-
asons to object to the machine’s prediction y, then the
human responds that they have no more advice to give.

Effectively, the human re-programs the machine’s know-
ledge base, not by providing arbitrary “code snippets”, but by
offering reasons on why the machine’s explanation y of its
decision differs from the user’s grounded model (or its dual
representation) that the machine is looking to identify, and
which corresponds to the explanations that the human would
expect. For this advice protocol we can show the following:
Theorem 4.3 Consider knowledge bases κ = 〈%,�〉 whose
rules can be ordered linearly based on �, and a feedback
class F∗ of feedback functions fκ that adhere to the advice
protocol above. Then, there exists an efficient conformant le-
arner for F∗, even if restricted to passively drawing inputs.

Proof sketch: Start from an empty knowledge base κ0. For
every passively drawn input x, predict y = σ̃κi

(x), receive
fκ(x, y), and update κi into κi+1 by: removing unrecognized
or superfluous rules, and adding rules that cause incomplete-
ness or counterarguments with priorities higher than existing
conflicting rules. Repeat until fκ(x, y) =X for m consecu-
tive cycles, with m being polynomial in the relevant parame-
ters and chosen following standard PAC proof techniques. 2

The efficiency of the conformant learner from Theorem 4.3
rests on the efficiency of reasoning (cf. Theorem 4.2). This in-
terplay between learning and reasoning echoes past work sh-
owing that the two processes cannot be decoupled [Michael,
2014], which ends up limiting the depth of reasoning that can
be tractably supported, in line with psychological evidence
on the bounded depth of human reasoning [Balota and Lorch,
1986]. The efficient transfer of knowledge supported by ma-
chine coaching allows this bound to be circumvented, confir-
ming our earlier point that machine coaching allows more to
be learned than what is autonomously learnable by machines.

5 Further Extensions and Considerations
For the further and fuller development of a machine coaching
theory, we would consider several key directions: (i) accom-
modating imperative / procedural knowledge, inspired by ap-
proaches such as program induction and automatic program-
ming (see, e.g., [Ellis and Gulwani, 2017]); (ii) developing
more advanced machine coaching protocols, inspired by ap-
proaches such as curriculum learning [Bengio et al., 2009]
and coactive learning [Shivaswamy and Joachims, 2015]; (iii)
acknowledging the potentially inadvertent effects that a ma-
chine’s prediction may have on its own realizability [Michael,
2015a; 2015b] due to any consequent actions or reactions by
the machine, the human, or the environment at large; (iv) esta-
blishing conditions under which arguments can be learned au-
tonomously, while anticipating that the integration of learning
and argumentation-based reasoning might affect considerably
what can be provably shown to be learnable [Michael, 2008;
2014]; and (v) defining metrics and computing, or empirically
measuring, the cognitive load of humans when being engaged
in coaching, compared to programming or annotating data.

Although machine coaching explicitly seeks to facilitate a
bilateral understanding between the two parties, this paper’s
perspective is, admittedly, more geared towards a machine’s
understanding of the human, than the other way around. Fu-
ture work taking the complementary perspective [Carroll and
Olson, 1988] could examine whether a human’s degree of un-
derstanding of the machine as achieved via machine coaching
is comparable to that achieved via task-specific approaches
(see, e.g., [Kulesza et al., 2015]). We expect that some kind of
visualization of the machine’s explanations in the form of gra-
phs might help to further enhance human understanding (see,
e.g., [Michael, 2017; Rodosthenous and Michael, 2019]).

Far from being a silver bullet, we anticipate that the mach-
ine coaching paradigm — sitting between machine program-
ming and machine learning, and explicating a type of human-
machine interaction that is typically at the fringes of the other
two paradigms — will prove to be useful both for debugging
and personalizing user-independent knowledge that has been
gathered through the other two paradigms, and for efficiently,
effectively, and incrementally gathering user-specific know-
ledge for domains with: highly user-specific preferences, re-
petitive everyday tasks, explanations that users can verbalize,
and without critical ramifications in case of mistaken actions.

In an era of voice-controlled and triggered-based home au-
tomation systems such as Siri, Alexa, and IFTTT [2019], the
prospect of developing cognitive assistants (even for selected
everyday tasks) that are capable of learning on the job, explai-
ning their decisions, and being advised and corrected when
making mistakes, offers a prime opportunity to apply and eva-
luate the unique features of machine coaching, and could act
as a first step towards the wider adoption of machine coaching
as a catalyst for the disruptive automation of knowledge work.
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