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Abstract

Federated Learning (FL) is an emerging privacy-
aware machine learning technique that applies suc-
cessfully to the collaborative learning of global
models for Human Activity Recognition (HAR).
As of now, the applications of FL for HAR assume
that the data associated with diverse individuals fol-
low the same distribution. However, this assump-
tion is impractical in real-world scenarios where
the same activity is frequently performed differ-
ently by different individuals. To tackle this is-
sue, we propose FedMAT, a Federated Multi-task
ATtention framework for HAR, which extracts and
fuses shared as well as individual-specific multi-
modal sensor data features. Specifically, we treat
the HAR problem associated with each individual
as a different task and train a federated multi-task
model, composed of a shared feature representation
network in a central server plus multiple individual-
specific networks with attention modules stored in
decentralized nodes. In this architecture, the at-
tention module operates as a mask that allows to
learn individual-specific features from the global
model, whilst simultaneously allowing for features
to be shared among different individuals. We con-
duct extensive experiments based on publicly avail-
able HAR datasets, which are collected in both
controlled environments and real-world scenarios.
Numeric results verify that our proposed FedMAT
significantly outperforms baselines not only in gen-
eralizing to existing individuals but also in adapting
to new individuals.

1 Introduction

Human activity recognition (HAR) plays an important role
in context-aware services such as health monitoring and ag-
ing care [Straczkiewicz et al., 2021]. HAR involves collect-
ing and processing personal behavior data for training pur-
poses, which has important consequences in terms of data pri-
vacy. This has been addressed with Federated Learning (FL),
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Figure 1: Importance of different features for 3 activities from 10
different individuals in ExtraSensory dataset. Saturation indicates
higher relevance. The images indicate that the features important for
recognizing any given activity strongly depend on the target user.

an emerging machine learning technology that enables dis-
tributed learning of a global prediction model without com-
promising privacy [Li er al., 2020]. Given a group of users,
FL approaches to HAR [Tu et al., 2021] make use of local,
user-specific supervision to update a global, high-quality ac-
tivity predictor meant to be applicable to all users.

The above strategy, however, is not ideal in real-world set-
tings, which are strongly characterized by cross-individual
variability [Chen et al., 2021; Zhang er al., 2021b]:

Statistical Perspective. People are characterized by differ-
ent habits, lifestyles and behavior patterns. From a HAR per-
spective, this means that the same activity may be performed
very differently by different individuals, inducing a substan-
tial cross-individual discrepancy in the conditional distribu-
tion of activities given sensor observations. In other words,
the importance of specific sensors — and, by proxy, of latent
features derived from them — is very individual-specific.

System Perspective. A major consequence of this fact is
that, from the perspective of HAR applications, it is challeng-
ing to leverage statistical models learned on known users, for
which annotated data is available, for predicting the activity
of new users with their own activity characteristics.

Some FL-based approaches handle cross-individual diver-
sity by learning user-specific models [Bettini er al., 2021;



Tu et al., 2021]. Most importantly for our contribution, Meta-
HAR [Li et al., 2021] trains a shared embedding network in
a federated manner and then adapts the network with output
layer to specific users via fine-tuning.

However, these approaches ignore the problem of feature-
level discrepancy. In order to illustrate this problem, we
trained a set of individual- and activity-specific random forest
classifiers for three activities and ten randomly chosen indi-
viduals from the ExtraSensory dataset [Vaizman et al., 2017],
and visualized the contributions of different sensors in Fig. 1.
Darker hues indicate higher relevance, computed as mean de-
crease in impurity. Consider the activity “exercise” (left im-
age). It is clear that accelerometer data plays an important
role in recognizing this activity for User 2, while predictions
for User 8 rely more heavily on GPS coordinates. The same
pattern is clearly visible for all activities. This indicates that
the sensors that contribute the most to recognizing certain ac-
tivities strongly depend on the target individual. This obser-
vation is supported by recent studies on the diversity of hu-
man behavior in the social sciences, cf. [Zhang et al., 2021b].
As a consequence, existing FL methods struggle when ap-
plied to individuals that were not observed at training time,
as discussed in the Related Work section.

Prompted by these observations, we propose FedMAT, a
Federated Multi-task ATtention framework that extracts both
shared and individual-specific features for multi-modal sen-
sory feature fusion. FedMAT treats each individual as a learn-
ing task and utilizes a federated multi-task learning frame-
work, considering that multi-task learning is naturally suited
to the implementation of federated learning [Smith er al.,
2017]. FedMAT comprises a single shared network stored
in a central node and multiple, individual-specific networks
stored in distributed nodes. Specifically, the shared network
is trained via federated learning across individuals to learn a
set of global features. Then, for each individual an attention
mask is applied to the shared network, such that each atten-
tion mask automatically learns the importance of the shared
features for the different individuals. This way, FedMAT ac-
quires a set of global features that are also shared and rele-
vant for different subgroups of individuals, promoting gen-
eralization across individuals. We conduct an extensive em-
pirical evaluation that shows FedMAT how outperforms sev-
eral competitors when predicting activities of both known and
new individuals ones, and performs especially well for chal-
lenging data sets collected under realistic, heterogeneous con-
ditions. Our main contributions are as follows:

¢ We introduce FedMAT, a novel framework for cross-
individual HAR that extracts and fuses individual-
agnostic and individual-specific multimodal features in
a federated multi-task learning manner.

* We propose a multi-task attention mechanism, which
works as a mask for learning individual-specific features
from the shared model while allowing for features to be
shared among different individuals.

* We conduct extensive experiments on publicly available
datasets. Results verify that FedMAT significantly out-
performs baselines not only in generalizing to existing
individuals but also in adapting to new individuals.

2 Related Work

2.1 Deep learning for HAR

Applications of Deep Learning (DL) to activity recognition
are quite widespread [Wang et al., 2019], owing to the ability
of DL of achieving state-of-the-art performance without the
need for explicit feature design [Zeng et al., 2014]. A sys-
tematic evaluation of various feed-forward neural networks
on activity recognition data shows that representation learn-
ing and time correlations are both critical to recognition per-
formance [Hammerla et al., 2016]. Building on this insight,
models like DeepConvLSTM [Francisco and Daniel, 2016]
and DeepSense [Yao er al., 2017] leverage a hybrid architec-
ture that combines CNNs and RNNs. AttenSense [Ma et al.,
2019] improves on these designs by implementing an atten-
tion module into a multimodal neural network in a way that
is well suited for capturing both spatial and temporal corre-
lations. Notably, the attention weights are identical across
individuals. These approaches are not designed for handling
cross-individual differences, and therefore may display de-
graded performance when applied in real-world HAR tasks,
where the data is heterogeneous [Chen er al., 2021].

2.2 Federated learning for HAR

Privacy-sensitive sensory information is a major challenge for
traditional approaches to achieving high recognition accuracy
while protecting users’ privacy [Zhang et al., 2021a]. Fed-
erated learning aims to train a centralized model using the
data stored in multiple distributed nodes in a privacy-aware
manner [Yang et al., 2019]. Federated Averaging [McMa-
han er al., 2017] combines local stochastic gradient descent
(SGD) on client nodes with model averaging on the server-
side, is able to reduce communication rounds between clients
and server. Existing studies [Zhao et al., 2018] have shown
that federated learning performs well when clients hold non-
IID data, and thus has some potential for addressing cross-
individual diversity in HAR [Ouyang et al., 2021]. However,
although federated learning-based HAR approaches succeed
in learning from different clients, pure FL does not model
the similarity and discrepancy of the clients and thus fails
to learn personalized models for all individuals. Multi-task
learning (MTL) [Zhang and Yang, 2021] combines informa-
tion from multiple, related learning tasks to improve predic-
tion performance of all the tasks simultaneously, and rep-
resents a natural strategy for dealing with cross-individual
differences, and exploiting cross-individual similarities, in
HAR. MOCHA [Smith et al., 2017] is proposed as a general
federated multi-task learning framework and performs well
for HAR task. However, it ignore the case of heterogeneous
data distribution. Most closely related to our approach, Meta-
HAR [Li et al., 2021] solves personalized HAR by treating
each individual as a separate task and learns both shared and
user-specific information. Compared with learning a one-
size-fits-all model, MTL approaches can precisely capture re-
lationships among non-IID data and are naturally well-suited
for dealing with user heterogeneity in cross-individual HAR.
However, existing works design the MTL model by taking a
feedforward network and splitting the network at the classi-
fication layer, and therefore ignore discrepancy at the feature
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Figure 2: Architecture of FedMAT. Structures of the central model and one of the client models are visualized.

level.

3 Method

In this paper, we are concerned with cross-individual HAR.
In the following, I/ indicates the set of individuals. For each
such individual v € U, we have access to a corresponding
data set D, = {(zi,,9,)}", where z;, € R? are sensor
readings and y;, are corresponding activity annotations.

3.1 Federated Multi-Task HAR

In our framework, we treat the HAR problem associated with
each user as a separate learning task. In order to achieve
strong generalization across individuals, we consider both
heterogeneity and similarity between individuals by lever-
aging a Federated Multi-Task learning technique similar to
MOCHA [Smith ef al., 2017]. The proposed architecture con-
sists of a central model, with parameters O, and m decen-
tralized models W,,,u € {1,2,--- , m} that learn individual-
specific features. The overall goal is to acquire a HAR model
that generalizes (i) across observed individuals, represented
by U, and (ii) to new individuals outside of /. For now, let us
focus on the first desideratum. This can be implemented by
minimizing an appropriate loss over the observed individuals,
as follows:

mo Ny

Jnin SN lu(fulal: ©c, W), ul). (1)
u=1i=1

Here, [,,(-, -) indicates the loss function associated to user w,
and f,(-) a corresponding HAR predictor that depends on
both the shared parameters O, and the user-specific param-
eters W,,. The architecture of the predictors is detailed next.
The embedding network processes the sensor observations

x using a CNN-RNN architecture. As inputs for the neu-
ral networks, the training instances are partitioned by fixed-
size sliding window into k time intervals of length L. This

results in a data matrix of shape ds x L, where dg is the
dimension for each sensor s (e.g. X, y, and z axes for ac-
celerometer). We then apply a Fourier transform to compute
frequency-domain information, obtaining a final input ten-
sor X of shape ds x 2f x k, where f is the dimension of
frequency-domain information. The set of tensors for each
sensor, X = {X,}, is finally the input of embedding net-
work. The embedding network itself uses two sets of con-
volutional layers: the first set is applied to each sensor sep-
arately, the second one is applied to the concatenation of the
individual sensor embeddings (see Fig. 2), so to fuse their rep-
resentations and extract spatial dependencies between them.
Within the two CNNs, we apply attention-based mask to ex-
tract individual-specific features, which will be introduced in
Sec. 3.2. Then, Gate Recurrent Unit (GRU) layers are used
to extract temporal relevance of the k¥ CNN outputs. Finally,
the embedding vectors output by the GRU layers are fed to a
fully connected output layer that computes the probabilities
for each category using a softmax activation.

Recall that our model is split into shared and individual-
specific parts, which are stored separately. The central model
O, contains two CNNs that perform single sensor feature
extraction and multiple sensor features fusion. As for the
decentralized individual models W,, = {ay, hy, ¢, }, where
a, indicates attention-based mask modules for extracting
individual-specific features, h,, indicates a GRU module for
extracting temporal features, and ¢, refers to output layer
for classification. In this way, both individual-agnostic and
individual-specific features can be extracted by the proposed
framework. To optimize and update the model, the param-
eters are transferred between central server and distributed
clients. Specifically, each individual with a local dataset D,,
gets CNN models ©. from the central server, and introduce
their data into CNNs masked by their local attention module
to get their specific feature embeddings. Then, embedding
vectors are introduced to GRU to get temporal features and



Algorithm 1 FedMAT.

Input: m individual-specific data sets {D,, }, one per client.
Output: central model O, individual-specific models
{Wu}.
1: Server: Initialize central model O, + O
2: for round =1,2,... do
3:  foreachu € {1,2,...,m} in parallel do
4: Client u: Get central model © . from the server.
5 Client u: Train for n epochs using central model
O, together with local model W,,, and get locally
updated parameters ©,, and W,,.

6: Client u: Push updated parameters ©,, to server.
7:  end for

8:  Server: Update © according to Eq. 2

9: end for

10: return O, and {W,..., Wy, }

finally get the loss via output layer. By performing n epochs
of training locally in the clients, the parameters are separately
updated to central server and decentralized nodes. The central
server then averages the updates to update the shared model
by averaging the models:

@)
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3.2 Attention-based Mask

As mentioned above, the recognition of different individuals’
activity relies on the different sensor readings. In order to pre-
cisely adapt the central model to unique individuals, we apply
the attention-based mask to the feature representation layers,
aiming at extracting individual-specific information. There-
fore, we train multiple individual-specific attention networks.
As such, the attention masks can be considered as feature se-
lectors from the shared network, while the shared networks
can learn a generalizing shared features across all individu-
als. Recall that our embedding network contains two types of
CNN layers: (i) sensor-specific convolutional layers, and (ii)
fusion convolutional layers. We apply attention-based mask
module on both of the two types of convolutional layers, as
shown in Fig. 2.

The detailed structure of the attention-based mask is shown
in Fig. 2, consisting of multiple convolutional blocks for
extracting task-specific features. Specifically, we refer the
shared features in the [-th layer of the shared network as el
and the learned attention mask i 1r1 this layer for individual u as

. The task- spemﬁc features ¢!, in this layer, are then com-
puted by element-wise multlphcatlon of the attention masks
with the shared features:

! = Mask!, © p. 4)

For the first attention module in the convolutional layers, we
takes as input only features in the shared network. As for sub-
sequent attention mask in layer 7, the input the concatenation

of the shared featurcjs p] , and the task-specific features from
the previous layer a7 "

Maskl, = h(g([p'; f(el)]))- (5)
Here, f, g, h are convolutional layers with batch normaliza-
tion, following a non-linear activation ReLu in f, g or Sig-
moid in h. Both f and g is composed with a [3 x 3] kernel,
while h has a [1 x 1] kernel to match the channels between the
concatenated features and the shared features. Then the atten-
tion mask Mask!, € [0, 1] is learned with back-propagation,
which can operate as feature selectors from the shared fea-
tures, while the shared network learns a generalized features
across all individuals.

3.3 Individuals Adaptation

Finally, to address HAR task on new individuals, we treat the
procedure as a meta-learning task. Specifically, we first meta-
train the central feature representation networks ©,. using the
data from observed existing individuals as the procedure in
Algorithm. 1. Then, for the new individual w, the shared net-
works ©.. is then fine-tuned on the dataset of new individual
Dy using pairwise loss:

lij = =dijlog(o(Dij)) — (1 = 6i5)) log(1 — o(Dij)), (6)
where o(-) refers to the logistic sigmoid function, D;; indi-
cates the similarity between sample ¢ and j, where we using
cosine similarity, and 6;; = 1 if y; = ¥, and O otherwise.

Then, the user-specific layers W, together with the fine-
tuned feature-representation network O, trained with the
cross-entropy loss. Back-propagation is applied to {©,,, W, }
to minimize the classification loss.

4 Evaluation

In this section, we firstly introduce experimental setups and
then describe the experimental results to answer empirically
the following research questions:

Q1 Does FedMAT improve performance among existing in-
dividuals?

Q2 Does FedMAT help the adaptation to new individuals?

Q3 Does multi-task attention module learn heterogeneous
features effectively?

Q4 How long does FedMAT take for adaptation?

4.1 Experimental Setup

We evaluate the proposed method on the following four
wearable-sensor-based benchmark datasets:

« HHAR [Stisen et al., 2015]: It contains 43, 930, 257 ac-
celerometer and gyroscope recordings collected from 9
individuals performing 6 activities. An important fea-
ture of this dataset is that users perform were asked to
perform all activities while using 12 different devices.

« PAMAP2 [Reiss and Stricker, 2012]: It contains
3,850, 505 recordings from three inertial measurement
units (IMUs) located on the hand, chest, and ankle. Each
IMU hosts an accelerometer, gyroscope, magnetometer,
thermometer, and heart rate sensor. The dataset was col-
lected from 9 participants performing 12 main activities.



Model HHAR PAMAP2 ExtraSensory SmartJLU
Accuracy macro-F1 =~ Accuracy macro-F1  Accuracy macro-F1 =~ Accuracy macro-F1
DeepSense 94.12 93.43 89.37 90.67 65.62 64.17 84.71 80.56
AttenSense 94.22 94.98 88.11 88.31 67.26 66.82 85.09 82.11
DeepSense-MTL 96.45 96.08 91.37 90.43 70.98 71.19 87.37 83.01
AttenSense-MTL 96.15 95.93 90.10 90.32 71.75 71.03 87.10 84.32
Meta-HAR 96.02 95.85 90.47 89.92 72.32 71.29 86.40 80.13
FedMAT-noSMask 96.17 96.01 91.89 91.73 71.36 70.43 87.82 83.79
FedMAT-noFMask 95.29 94.62 90.14 90.25 69.12 69.09 82.14 78.25
FedMAT 96.88 96.81 92.61 91.84 75.72 75.03 89.78 83.02
Table 1: Overall comparison results on generalizing with existing individuals (unit:%).
Model HHAR PAMAP2 ExtraSensory SmartJLU
Accuracy macro-F1 =~ Accuracy macro-F1  Accuracy macro-F1  Accuracy macro-F1
DeepSense 91.13 90.88 80.01 78.51 60.22 58.53 76.91 74.14
AttenSense 90.41 90.22 81.53 82.11 64.12 60.17 78.67 74.05
DeepSense-MTL 91.02 91.46 84.31 85.31 63.18 58.13 79.09 76.53
AttenSense-MTL 92.81 91.98 82.72 83.12 62.15 59.03 80.04 74.58
Meta-HAR 93.13 92.82 86.91 85.41 68.16 62.92 82.04 80.45
FedMAT-noSMask 95.77 95.56 83.89 82.73 71.36 68.43 85.33 83.59
FedMAT-noFMask 93.89 93.62 86.04 85.65 69.12 66.09 82.12 80.50
FedMAT 95.83 95.81 86.72 85.94 73.83 69.97 86.74 84.55

Table 2: Overall comparison results on adapting to the new individuals (unit:%).

« ExtraSensory [Vaizman et al., 2017]: It contains over
300, 000 instances labeled with 51 types of human con-
texts and collected in a natural environment from 60
individuals. The records includes measurements from
tri-axis sensors and information from smartphones and
smartwatches.

» SmartJLU:' A similar dataset using the same tool and
techniques as this one [Bison e al., 2021] collected in
China, which contains over 30,000 instances labeled
with daily activities collected from 50 individuals, over
two weeks in a real-life scenario in which participants
are required to use their smartphones naturally. Dur-
ing the data collection procedure, a smartphone app was
used to carry out sensor recording (e.g. GPS, accelerom-
eter) and administer periodic questionnaires about activ-
ity, location and social context. All students signed in-
formed consent forms. The main features of this dataset
are that it: (1) contains annotations for complex activ-
ities like “Housework™; (2) is collected in an uncon-
strained setup. In this experiment, the records are an-
notated with 23 different activities. The signals are ob-
tained from smartphone sensors and include motion-
reactive sensors (e.g., accelerometer), location, phone
state, etc.

We evaluate FedMAT by comparing it with other mod-
els. Specifically, we compare both state-of-the-art models on

"We open source SmartJLU dataset and source code on Github:

https://github.com/Super-Shen/FedMAT.

HAR and two variants of FedMAT as follows:

DeepSense [Yao ef al., 2017]: A deep learning model
using CNN-RNN structure for sensor-based HAR.

AttenSense [Ma et al., 2019]: An attention-based mul-
timodal neural network model for sensor-based HAR.

DeepSense-MTL: Multi-task version of DeepSense.
AttenSense-MTL: Multi-task version of AttenSense.

Meta-HAR [Li et al., 2021]: A federated representa-
tion learning framework, in which a signal embedding
network is meta-learned in a federated manner.

FedMAT-noSMask: FedMAT model removes the at-
tention mask in sensor-specific convolutional layers.

FedMAT-noFMask: FedMAT model removes the at-
tention mask in fusion convolutional layers.

We implemented FedMAT using Python 3.6 and Pytorch

1.8.

All experiments are carried out on a machine with 2

NVIDIA GeForce RTX 3090 GPUs. The Adam optimizer
with 1 = 0.9, B2 = 0.98, and ¢ = 1078 is used to update all
network parameters. For federated learning, we set A = 1.0
and perform n = 10 epochs of local training at each update
round.

We apply the settings of meta-learning by splitting all the
users in a dataset into meta-train users, which participate in
the meta-learning process, and meta-test users for testing the
meta-learned model. For each user, we split the local dataset
of each individual into a train set (80%) and a test set (20%).
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Figure 3: Visualization of attention-based mask on the HHAR and
ExtraSensory datasets.

To be specific, on the HHAR and PAMAP2 dataset, we ran-
domly select one user as the meta-testing individual. For Ex-
traSensory dataset, seven activities are selected and nine in-
dividuals are randomly selected as meta-train set, while one
individual is selected as meta-test set. For SmartJLU, nine
individuals are randomly selected as meta-train, while two
individuals for meta-testing.

Considering the labels are imbalanced, we use both macro-
F) and accuracy as the performance metrics in the evaluation.
We applied leave-one-individual-out validation. The reported
performance is the average over all test individuals.

4.2 Experimental Results and Discussion

FedMAT improves performance for observed individuals.
The results on generalizing among existing individuals are
given in Table 1: (1) FedMAT outperforms generally base-
lines on four datasets, which means that learning multi-task
attention modules in a federated learning manner can enhance
the generalization ability among diverse individuals. (2) Fed-
MAT is better than AttenSense, which shows that the atten-
tion weights on multimodal sensors can not be shared among
all individuals and each individuals should be allocated with
different attention because of the diverse behavior pattern. (3)
FedMAT performs better than Meta-HAR, which shows that
the heterogeneity should not only be considered in the clas-
sification layer, but also exits in the feature extraction proce-
dure. (4) The fact that FedMAT works extremely well on Ex-
traSensory datasets than other competitors illustrates its ro-
bustness and generalization capability in real-world scenar-
ios, where data distributions are largely heterogeneous.

FedMAT helps with adaptation to new individuals.

As for the adaptation ability of FedMAT on new individu-
als, results are shown in Table 2: (1) FedMAT generally out-
performs on four datasets, which means that it can handle
datasets with high heterogeneity effectively and can be easily
adapted to new individuals. (2) MTL models of DeepSense
and AttenSense outperforms the single-task version, which
indicates that MTL performs well on modelling features with
heterogeneous data. (3) Meta-HAR works slightly better than
FedMAT on the PAMAP2 dataset, since the signal distribu-
tions of PAMAP?2 dataset are weakly heterogeneous. How-
ever, FedMAT can outperforms other models on more hetero-
geneous datasets, especially on real-world datasets.

FedMAT learns heterogeneous features effectively.

We then evaluate the effect of multi-task attention module,
we remove the attention modules in both sensor feature ex-
traction layers and sensor features fusion layers. The results

ExtraSensory
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Figure 4: Evaluation of training epochs. Blue lines indicate perfor-
mances of Meta-HAR and the red lines are for FedMAT. Dot lines
refer to macro-F1 and plain lines are for accuracy

in Table 1 and Table 2 indicates that both of theses two atten-
tion modules contribute to the cross-individual HAR tasks.
Generally, the attention module for sensor fusion layer has
the higher impact. Moreover, to understand the role of the
proposed attention modules, we visualize the attention masks
Mask € [0,1] of sensor fusion layer for each sensors across
multiple individuals. As shown in Fig. 3, the different weights
of various sensors are learned by our proposed approach. In
particular, the attention masks have strong diversity across in-
dividuals, which validates the argument of the the motivating
example in Section 1.

FedMAT adapts faster.

We further compare FedMAT with the best contender, Meta-
HAR, by increasing the number of client training epochs from
5 to 25 and check how accuracy changes. The results, il-
lustrated in Fig. 4, verify that FedMAT consistently outper-
forms Meta-HAR on both controlled and real-world data sets.
Moreover, FedMAT generally takes fewer epochs to achieve
its best performance. This further stresses the effectiveness
of our approach.

5 Conclusion

We introduced FedMAT, a novel federated learning frame-
work for cross-individual sensor-based activity recognition
that effectively addresses the heterogeneity in sensory fea-
ture distribution across different individuals. FedMAT works
by extracting both shared and individual-specific features for
multi-modal sensor fusion in the setting of FL. Our empiri-
cal evaluation shows that the proposed approach consistently
outperforms several competitors on four different and chal-
lenging data sets.
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