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B Method

Overview Architecture

0 Federated multi-task framework

Extracts and fuses individual-agnostic
and individual-specific multimodal
features in a federated multi-task
learning manner.

0 Multi-task attention mechanism

Works as a mask for learning
individual-specific features from the
shared model while allowing for
features to be shared among different

individuals.
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Figure 2: Architecture of FedMAT. Structures of the central model and one of the client models are visualized.
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Objective

The proposed architecture consists of a central model,
with parameters ©., and m decentralized models W,,,u €
{1,2,--- ,m} that learn individual-specific features. The
overall goal is to acquire a HAR model that generalizes (1)
across observed individuals, represented by U4, and (ii) to new
individuals outside of /.
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Federated Model Update

Algorithm 1 FedMAT.

Input: m individual-specific data sets {D,, }, one per client.
Output: central model ©., individual-specific models
{Wu}.
1: Server: Initialize central model ©. + O
2: for round =1,2,... do
3:  foreachu € {1,2,...,m} in parallel do
4: Client u: Get central model ©. from the server.
2 Client u: Train for n epochs using central model
©. together with local model W,,, and get locally
updated parameters ©,, and W,,.

6: Client u: Push updated parameters ©,, to server.
7:  end for

8:  Server: Update O, according to Eq. 2

9: end for

10: return O, and {W,,..., Wy}
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Attention-based Mask

We apply the attention-based mask to the feature representation layers, aiming at extracting individual-
specific information.

Specifically, we refer the shared features in the /-t4 layer of the shared network as ¢/, and the learned
attention mask in this layer for individual u as €!, . The task-specific features é,, in this layer, are then
computed by element-wise multiplication of the attention masks with the shared features:

e\, = Maskl, ® p’. (4)

For the attention mask in layer j, the input thelconcatenation of the shared features p/ , and the task-
specific features from the previous layer @, :

Maskl, = h(g([p"; f(€1)))). (5)



Evaluation

We conduct extensive experiments on publicly available datasets. Results verify that:

 FedMAT improves performance for observed individuals;
* FedMAT helps with adaptation to new individuals.

Model HHAR PAMAP2 ExtraSensory SmartJLU
Accuracy macro-F1 Accuracy macro-F1 Accuracy macro-F1 Accuracy macro-F1
DeepSense 94.12 93.43 89.37 90.67 65.62 64.17 84.71 80.56
AttenSense 94.22 94.98 88.11 88.31 67.26 66.82 85.09 82.11
DeepSense-MTL 96.45 96.08 91.37 90.43 70.98 71.19 87.37 83.01
AttenSense-MTL 96.15 95.93 90.10 90.32 i O 71.03 87.10 84.32
Meta-HAR 96.02 95.85 90.47 89.92 72.32 71.29 86.40 80.13
FedMAT-noSMask 96.17 96.01 91.89 91.73 71.36 70.43 87.82 83.79
FedMAT-noFMask 95.29 94.62 90.14 90.25 69.12 69.09 82.14 78.25
FedMAT 96.88 96.81 92.61 91.84 1572 75.03 89.78 83.02
Table 1: Overall comparison results on generalizing with existing individuals (unit:%).
Model HHAR PAMAP2 ExtraSensory SmartJLU
Accuracy macro-F1  Accuracy macro-F1 Accuracy macro-F1 Accuracy macro-F1
DeepSense 91.13 90.88 80.01 78.51 60.22 58.53 76.91 74.14
AttenSense 90.41 90.22 81.53 82.11 64.12 60.17 78.67 74.05
DeepSense-MTL 91.02 91.46 84.31 85.31 63.18 58.13 79.09 76.53
AttenSense-MTL 92.81 91.98 82.72 83.12 6215 59.03 80.04 74.58
Meta-HAR 93.13 92.82 86.91 85.41 68.16 62.92 82.04 80.45
FedMAT-noSMask 95.77 95.56 83.89 82.73 71.36 68.43 85.33 83.59
FedMAT-noFMask 93.89 93.62 86.04 85.65 69.12 66.09 82.12 80.50
FedMAT 95.83 95.81 86.72 85.94 73.83 69.97 86.74 84.55

Table 2: Overall comparison results on adapting to the new individuals (unit:%).



I Evaluation

We conduct extensive experiments on publicly available datasets. Results verify that:

* Multi-task attention module learns heterogeneous features effectively;

* FedMAT adapts faster.
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Figure 3: Visualization of attention-based mask on the HHAR and  Figure 4: Evaluation of training epochs. Blue lines indicate perfor-
ExtraSensory datasets. mances of Meta-HAR and the red lines are for FedMAT. Dot lines
refer to macro-F1 and plain lines are for accuracy
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