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Abstract. We are interested in aligning how people think about objects and what
machines perceive, meaning by this the fact that object recognition, as performed
by a machine, should follow a process which resembles that followed by humans
when thinking of an object associated with a certain concept. The ultimate goal is
to build systems which can meaningfully interact with their users, describing what
they perceive in the users’ own terms. As from the field of Lexical Semantics, hu-
mans organize the meaning of words in hierarchies where the meaning of, e.g., a
noun, is defined in terms of the meaning of a more general noun, its genus, and of
one or more differentiating properties, its differentia. The main tenet of this paper is
that object recognition should implement a hierarchical process which follows the
hierarchical semantic structure used to define the meaning of words. We achieve
this goal by implementing an algorithm which, for any object, recursively recog-
nizes its visual genus and its visual differentia. In other words, the recognition of
an object is decomposed in a sequence of steps where the locally relevant visual
features are recognized. This paper presents the algorithm and a first evaluation.
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1. Introduction

Lexical Semantics studies how word meanings, i.e., linguistic concepts [1,2] are formed,
where these concepts are assumed to be constructed by humans through language. As
from this field, humans organize the meaning of words in hierarchies where the meaning
of, e.g., a noun, is defined in terms of a more general noun, its Genus, and of one
or more differentiating properties, its Differentia. Thus for instance, a guitar is a
stringed (musical) instrument with six strings [3]. The main tenet of the work described
in this paper is that object recognition should implement a process which progressively
visually reconstructs the hierarchical semantic structure used to define the meaning of
words. Only in this way it is possible to have a full one-to-one alignment between how
people think of the world and, ultimately, human language, and machine perception.
The ultimate goal is to build systems which can meaningfully interact with their users,
describing what they perceive in the users’ own terms. Notice how this is a well known,
still unsolved problem, the so called Semantic Gap problem, which was identified in 2010
[4] as (quote) “... the lack of coincidence between the information that one can extract
from the visual data and the interpretation that the same data have for a user in a given
situation.”.

Based on the work in the field of Teleosemantics [5], see in particular the work
in [6,7,8,9], the field of Visual Semantics has been introduced as the study of how hu-
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Figure 1. A classification concept hierarchy for Musical Instruments [13]. Left: Lexical semantic hierarchy
and Genus (G) and Differentia (D) of each concept. Right: Visual semantic hierarchy.

mans build concepts when using vision to perceive objects in the world [10]. Accord-
ing to this line of work, objects should be recognized by recognizing first their genus
and then their differentia, as visually represented in the input images or videos. Thus,
for instance, a guitar should be recognized first as a stringed instrument (Genus),
which is itself a musical instrument with strings, and then by recognizing its six strings
(Differentia) [3,2]. This clearly leads to a recursive recognition process where the
set of possible objects gets progressively restricted to satisfy more and more refined dif-
ferentiae. In the most general case, the root node is the concept object itself, namely any-
thing that can be detected as such, e.g., via a bounding box. In this context, we adopt an
egocentric point-of-view with respect to a specific person [11,12].

As an example consider Fig. 1, taken from a small classification of musical instru-
ments [13]. In this figure (left), we can see how the meaning of each label is provided
in terms of a genus and a differentia, and where the genus one level down is the label
of the concept the level up. Dually in the figure (right), we can see how all the images
clearly show the differentia that allows to differentiate the object one level down from
the object one level up (as having an extra feature, i.e., the visual differentia) and from
all the siblings (as all objects under the same visual genus have a different visual differ-
entia). Notice how, in current hierarchical computer vision tasks, the hierarchy is usually
a-priori and static, e.g., [14], and does not consider the users’ language and its mapping
to their visual perception (see, e.g., [15,16]), leading therefore to a human-machine mis-
alignment. For instance, a non-expert user would correctly classify the Koto instrument
in Fig. 1 as a stringed instrument but, differently from a musician, would not describe
it using its name, thus having two different but consistent linguistic descriptions of the
same image.

The main goal of this paper presents a general algorithm which aligns machine per-
ception and human description. The algorithm is based on two key ideas:

* Object recognition is implemented following a hierarchical decomposition pro-
cess where the uniquely identifying features of the input object (the differentia)
are recognized following the same order that is used in constructing the meaning
of the label naming the object.

* Object recognition follows an egocentric, incremental approach where the user
progressively refines the level of detail at which an object is recognized.

The work in [10] introduced visual semantics in the base hierarchy-less case. This paper
extends this work to hierarchies of any depth. We do this by leveraging Extreme Value
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Figure 2. Example of an encounter. The video contains eight frames of a power strip gradually rotated over
time on a white background. Similar adjacent frames are aggregated in three visual objects, which form the
encounter E [10]. For better visualization, each visual object is represented, here and below, as its first frame.

Os

Figure 3. Left: An object made of two distinct encounters (dashed line), with their similar visual objects
connected in green. Right: Two distinct objects sharing the same genus (via the visual objects connected in
green). Red visual objects are the differentia (i.e., different tape on the back side).

Machines [17], a principled approach to open set problems which allows to implement
differentia-based object recognition. The source code of the algorithm, the dataset and
all the material necessary to reproduce the experiments are freely available online.?

2. Visual Semantics

We inherit from [10] the following foundational notions. An encounter E is an event
during which a user sees an object. We computationally model an encounter as one or
more visual objects, where a visual object consists of a sequence of adjacent frames that
are similar to each other. Fig. 2 shows an example of an encounter with its decomposi-
tion into visual objects. An object O is a collection of encounters that are perceived to
represent the same concept.

The left part of Fig. 3 shows an object consisting of two encounters, with the visual
objects that make the two encounters similar highlighted in green. Two encounters that
have at least a pair of visual objects that are similar are said to share the same Genus.
Two encounters with the same Genus could or could not be associated with the same
object. What makes this decision is the presence (or the absence) of aDifferentia,
i.e., a pair of visual objects that identifies the two encounters as representing two distinct
objects. The right part of Fig. 3 visually presents these concepts. The visual objects con-

2https://github.com/lucaerculiani/hierarchical-objects-learning.
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Algorithm 1 The main loop of the framework.
1: procedure MAIN
2: while True do
3 E + PERCEIVE()
O, < PREDICTGENUS(E)
while not GENUSOF(E, O, ) do
O, + PARENT(O,)

REFINEGENUS(O,, E)

AN U

nected in green indicate that the two objects share the same Genus, while those circled
in red are their Di fferentia, and indicate that they are distinct objects. The intuition
is that some partial views of the objects determine their Genus and Differentia
respectively. The hierarchy H organizes the objects, modeled as visual objects, in a tree-
like structure, which outlines the subsumption relationships between the objects in terms
of Genus and Differentia (see, e.g., Fig. 1).

3. Building an Egocentric Visual Semantic Hierarchy

The visual hierarchy is built incrementally as the objects are perceived. The interaction
with the user ensures that the visual hierarchy matches the user lexical semantics. The
proposed framework consists of a cyclic procedure in which at each iteration a new
encounter (a sequence depicting an object) is shown to the model. The model then asks
the user a series of queries over the Genus and Differentia of the new encounter
with respect to some of the objects that were seen in the past by the algorithm (which are
stored in its internal memory). Via this interaction, the user can guide the algorithm to
assign the new encounter to the correct position inside the machine’s knowledge base.

The main loop.  Algorithm 1 lists the pseudo-code of the infinite learning loop that takes
as input a new sequence at each iteration. This new sequence is first forwarded to an
embedding algorithm that converts the video sequence, currently encoded as a series of
frames, into a collection of visual objects (i.e. the encounter E). In this step, we employ
an unsupervised deep neural network, pre-trained on a self-supervised class-agnostic
task [18]. This training approach ensures that the embeddings are not explicitly biased
towards the classes. Then, the PREDICTGENUS procedure searches in its memory for
the most specific Genus O, for encounter F, driven by its similarity with previously
encountered objects. Starting from O, it interacts with the user to find the right position
of the encounter, possibly updating the hierarchy during the process. First, the user could
say that O, is not a Genus of ' (meaning that their common Genus is further up in the
hierarchy). If this is the case, the algorithm goes up through the hierarchy until it finds
a valid Genus for the encounter. This is refined by further interacting with the user via
the REFINEGENUS procedure. The two procedures are detailed below.

Genus prediction. The PREDICTGENUS procedure outlined in Algorithm 2 continu-
ously performs open-world recognition over the evolving H of objects seen so far by the
machine. The task is to predict the most specific node O, in H of the current encounter
E. The algorithm computes also the probability p, that E belongs to O.. For every vi-
sual object v of the current encounter, the candidate Genus is identified. Then, the al-
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Algorithm 2 The procedure predicting Genus of an encounter.

1: function PREDICTGENUS(E)
2: O, < GETROOT(H)

3: Pe < 1.0

4: for v € F do

5: O,,p, = PREDICTVOGENUS (v, GETROOT(H), 1.0)
6: if O, = GETROOT(H) V p. < p, then
7: O, + O,

8: Pe < Do

0: return (O, pe)

10:

11: function PREDICTVOGENUS(v, O, py,)

12: A < GETREJECTIONTRESHOLD(K)

13: C < GETCHILDREN(O,)

14 Dex < max o,ec PROBABILITY (O, v)

15: Oc+ < argmax o,cc PROBABILITY (O, v)
16: if p.- > ) then

17: return PREDICTVOGENUS (v, O¢x, pe+)
18: else

19: return (O, p,)

gorithm outputs the one with maximal probability (excluding the root node, which has
always probability 1.0). The procedure PREDICTVOGENUS in Algorithm 2 computes
the Genus of a visual object by navigating down the hierarchy. By leveraging the notion
of Genus and Differentia, the algorithm searches for the most specific node that
represents the current visual object. Starting from the root of the hierarchy, it computes
the most probable genus child O, for the visual object. If its probability p.~ exceeds a
rejection threshold ), the procedure recurs over it, otherwise it stops returning its parent
as the Genus of the visual object. Following [11], the rejection threshold is chosen with
an optimization procedure that maximizes the number of correct predictions given the
previous feedback by the user (stored in a supervision memory K). See the original paper
for the details. The procedure terminates when the most probable node is either below
the threshold or is a leaf.

The probability of a Genus being the genus of a visual object can be formalized
as the probability that an element belongs to a set (the set of previous visual objects for
that Genus). To compute this inclusion probability, we employed the Extreme Value
Machine (EVM) framework [17], because of its soundness and practical effectiveness.
Basically each node is associated with a set of examples, called extreme vectors, that are
used as representatives of the corresponding Genus. We use as extreme vectors all the
visual objects associated with any of the nodes in the subtree of the node. The probability
for a new visual object is computed based on the closest extreme vector and its associated
probability distribution (a Weibull distribution).

Genus refinement.  Starting from the most specific Genus for the encounter E that has
been identified by the machine and confirmed by the user (called the current Genus
and corresponding to “thing” in the simplest case), the algorithm traverses the hierarchy
down asking questions to the user to further refine the Genus for E. Fig. 4 presents a
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Figure 4. Representation of four possible choices that can be taken during the iterative encounter procedure.

graphical representation of the four possible situations at each iteration of the algorithm,
and the action to be taken as a result of the user feedback. The new encounter is depicted
in red, the current Genus (current best guess for Genus) in cyan, while the green node
is the Genus for which the machine is asking queries. For each of the possible actions,
each row in the table shows the preconditions that must be met in terms of Genus and
Differentia between the encounter, the candidate Genus and the current Genus,
and the effect that each action has on the inner hierarchy of the machine. The REFINE-
GENUS procedure consists of a sequence of questions and corresponding actions, as re-
ported in Fig. 4, until one of the actions results in placing the new encounter E in the
hierarchy (one of the two lower actions in the figure).

4. Experiments

The goal is to evaluate how much the hierarchy built by the machine is aligned with
the user hierarchy. This evaluation is done by measuring the distance in the hierarchy
between the predicted Genus and the user desired Genus. The greater the distance, the
greater the misalignment. All experiments were implemented in Python3 and PyTorch.

Data set. 'We used a collection of objects organized in a perfectly balanced hierarchy of
4 levels, such that each node (except for the leaves) inside the hierarchy has 3 children,
leading to a total of 3* = 81 leaves. Each object was recorded 5 different times while
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Figure 5. Comparison between naive model and PREDICTGENUS in terms of geodesic distances between the
predicted and the correct Genus.

rotated or deformed against a uniform background, thus obtaining 405 encounters. The
hierarchy was used to simulate the supervision of the user.

Experimental details. The whole set of videos in the dataset is presented to the machine
in random order. An agent simulates the user and provides supervision to the model by
comparing the ground-truth hierarchy of the data set against the hierarchy of the machine,
and replying to the queries of the algorithm accordingly (see Fig. 4). The hierarchy of
objects that is built over time is always consistent with the ground truth. The machine
goal is to minimize the categorization effort required from the user when a new encounter
must be placed into the hierarchy. The machine suggests the starting node, from which
the user navigates down the hierarchy until the correct node is found. The closer the
prediction of the machine is to the ground-truth node, the lower the effort of the user.

The performance is evaluated in terms of geodesic distance, namely the number of
edges in the shortest path between the predicted node and the target node selected by
the user. Even if this measure is affected by the size of the hierarchy (the deeper the
tree, the greater the average distance between couples of nodes), due to the fact that the
evolution of the hierarchy is completely guided by the user, any model has always its
hierarchy updated in the same way. This fact keeps this performance measure unbiased
in the context of this experiment. We compare the performance PREDICTGENUS with
that of a naive algorithm that always suggests the root of { as the starting node.

Results.  Fig. 5 reports the geodesic distance when varying the number of iterations of
the algorithm, averaged over 100 runs with different random orderings of the objects. Our
model, shown in red, substantially outperforms the naive algorithms (in blue), with the
difference becoming more pronounced as the number of observed objects increases. Af-
ter an initial phase in which the cost increases due to the rapid expansion of the hierarchy,
the average geodesic distance for PREDICTGENUS starts to decrease (at roughly 60 iter-
ations). The algorithm suggests starting nodes closer to the correct node with higher ac-
curacy because the increasing amount of encounters allows to better model each Genus.
In contrast, the naive algorithm converges toward an average cost that is equal to the
average distance between the root node and the leaves (the hierarchy of the dataset is
composed by four levels). Notice that a particularly bad predictor could in principle do
worse than the naive algorithm, by predicting a node in a subtree that is more distant
than the root node. Albeit preliminary, these results confirm the potential of the proposed
framework in correctly acquiring the hierarchy of the user and its semantics in terms of
Genus and Differentia.
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5. Related work

Our work implements an egocentric, incremental object recognition. A closely related
area is continual learning, which addresses the problem of learning to recognize novel ob-
jects without forgetting previous knowledge [19]. Traditional machine learning assumes
a closed-world setting, where the set of classes is defined at training time. Open set ap-
proaches reject examples belonging to unknown unknown classes [20]. Studies on open
world recognition extend open set by incrementally updating the model to incorporate
the new classes [21,22,23].

In many real-world tasks, such as gene classification and music genre recogni-
tion [24], the target labels have hierarchical relationships. In computer vision, [15,16]
tackle hierarchical novelty detection by identifying to which node in the hierarchy the
novel class is attached. Hierarchical information has been used to achieve more reason-
able classification errors [25,14] or integrated into neural networks [26,27]. These works
differ in that do not consider the semantic and egocentric aspects.

In the works on visual-semantic embeddings, the idea is to map the input feature
space to a semantic embedding space [28,29], for instance by projecting the images and
the knowledge graph into a unified representation [30]. [31] learns object attributes, both
semantic (part of the objects) and non-semantic (visual feature space), from annotations
to classify images. These approaches differ in that they neither try to align recognition
with lexical semantics nor use hierarchical classifications.

The approaches that study the grounding of human language in perception, espe-
cially vision [32], are strongly related to our work. Examples in this field are answer-
ing questions grounded on visual images [33], image captioning [34], visual common-
sense [35] and visual reasoning with natural language [36]. These approaches do not
leverage the work done in lexical semantics to drive the object recognition process.

6. Conclusion

In this paper, we have introduced a novel approach where objects are recognized follow-
ing the same hierarchical process that is used in lexical semantics to provide meaning
to the nouns used to name objects. The first set of experiments shows a consistent im-
provement in the alignment between what the system recognizes and the words used by
humans to describe what is being recognized.
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